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Abstract: Texture analysis has already demonstrated its great potential in many digital
image-based diagnostic systems. It allows to extract from an image many important diagnos-
tic information, impossible to capture with only the visual appreciation. The first attempts to
use a texture analysis (TA) as a tool for characterization of an image content took place in
the 70’s of the last century. Since then a variety of methods have been proposed and found
their application in many domains, also – in the medical field. However, it is still difficult to
indicate a method that would ensure satisfactory results for any diagnostic problem.
The present work gives an overview of the texture analysis methods, that have been applied
for hepatic tissue characterization from Computed Tomography (CT) images. It includes de-
tails of about forty studies, presented over the past two decades, devoted to (semi)automatic
detection or/and classification of different liver pathologies. Quoted systems are divided into
three categories: (i) based on a single-image texture of non-enhanced CT images of the liver,
(ii) based on a single-image texture of contrast-enhanced images, and (iii) based on a multi-
image texture. The latter ones concern a simultaneous analysis of sets of textures, each of
which corresponds to the same liver slice, but is related to a different contrast agent concen-
tration in hepatic vessels.
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A list of abbreviations is given at the end of this article.

1. Introduction

In clinical practice, when dynamic CT of the liver is performed, three image series
are usually acquired: the first one – before the contrast agent injection, the next two
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ones – after its injection, at arterial and at portal phase of its propagation [1]. The two
post-injection acquisition moments correspond, respectively, to the maximal concen-
tration of contrast agent that reaches the liver first via the hepatic artery, next – via the
portal vein. The arterial phase starts after about 25÷35 seconds after the intravenous
injection of contrast agent, the portal one – after about 60÷70 seconds. In some cases
a fourth – delayed hepatic phase is considered [2]. It takes place after about 5÷ 10
minutes succeeding the injection. Each of the three (or even four) images enhances a
different tissue property, that could reveal a development of a pathology. In the case
of the liver CT – it can be excessive or insufficient growth of the arterial or of the
portal vascular tree. After injection of the contrast agent, the high vascularization re-
gions are more enhanced than those with normal vasculature, and less vascularized
regions appear darker. The presence of contrast agent in hepatic vessels results also
in changes of texture properties, imperceptible to the naked eye.

In the first part of the study [3], several approaches to characterization of image
textures were presented. They based on:

– Gray Level Histogram (GLH), giving the First Order Statistics (FOS),
– Co-Occurrence Matrices (COM) [4–6],
– Run Length Matrices (RLM) [7–9],
– Gray Level Difference Matrices (GLDM) [10],
– Gradient Matrices (GM) [11],
– Texture Feature Coding Method (TFCM) [12],
– Autocorrelation Coefficients (AC) [13],
– Fractal Model (FM) [14–24],
– Discrete Wavelet Transform (DWT) [25],
– Laws’ Texture Energy (LTE) [26].

The aim of this part is to examine which of these methods have found their application
in Computer-Aided Diagnosis (CAD) systems, based on CT images of the liver.

The first attempts to liver texture characterization from CT images (about 20
years ago) considered only the non-enhanced images. Over the time, with a devel-
opment of imaging technique and with more and more wider access to studies it has
become possible to perform frequent imaging after administration of contrast agent.
Despite the availability of several series of images depicting the same part of liver,
texture analysis was performed yet for a long time on only one image (contrast-
enhanced, or still non-enhanced) . It is about 10 years ago, that the systems adapted
for multi-image texture analysis were introduced. Such systems tried to find tissue
characteristics based on analysis of several CT liver images, acquired at the same
slice location, but under different conditions (different moments of contrast agent
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propagation). Given the above, the review will present at first the systems based on
the analysis of a single image, acquired without contrast. Next, the systems dealing
with single-image textures, acquired after administration of contrast agent, will be
described. Finally, the multi-image texture-based systems will be quoted. The work
will be finished by general conclusions, drawn on the basis of the three parts of the
review.

2. Application of texture analysis in classification of liver disorders
based on CT images

2.1 Texture analysis of single liver CT image acquired without contrast agent

One of the earliest studies on the possibility of applying a texture analysis for the
characterization and recognition of liver tissue, from CT images, was presented in
1995 [27]. This work had two main objectives. The first was to investigate whether
the texture could be used to discriminate between various tissue types, providing the
information not accessible to human perception. The second was to find the most
useful features, in terms of tissue classification. In the study textural features ob-
tained by the COM (12 features), RLM (15 features) and the GLDM (20 features)
methods were used. Three types of hepatic tissue were characterized: normal liver,
abnormal liver with the clearly visible malignancy, and abnormal one with the invisi-
ble malignancy. The performance of features was compared on the basis of statistical
significance. It was found that the three features: entropy, local homogeneity (COM
method) and gray level distribution (RLM method) were the most appropriate to de-
tect an invisible (early) liver malignancy with a confidence level of above 99%

From this moment, quite a lot of semi-automatic systems for liver tissue recog-
nition from CT images have been proposed. In many of them, especially in the earlier
ones, the tissue was characterized on the basis of only one image, acquired without
injection of contrast agent [16, 28–38]. Quoted systems utilized several methods for
extraction of textural features. They included: gray-level histogram, co-occurrence
matrices, run length matrices, gray level difference matrices, fractal model, Laws’
texture energy measures, autocorrelation coefficients, or different frequency meth-
ods. A list of systems and tested methods is given in Table 1. Due to the fact that
each of the systems used different classifiers and that the methods for their quality
assessment were also different, the table do not contain the best classification results.

For example, the system evaluated by Chen et al. [16] was able to automatically
find the liver, to extract its boundaries and to recognize two types of liver tumors:
hepatoma and hemangioma. In this system, the image texture was characterized by
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Table 1. Comparison of systems based on single liver CT images acquired without contrast agent

Work Year TA Methods Tissue Classes and number of cases

Mir et al. [27] 1995
– COM
– RLM
– GLDM

– normal (200)
– abnormal, clearly visible (200)
– abnormal invisible (200)

Chen et al. [16] 1998
– COM
– FM

– hepatoma (20)
– hemangioma (10)

Husain et al. [28] 2000
– FOS
– COM

– normal
– abnormal

Sariyanni et al. [29] 2001 – FM
– healthy (99)
– HCC (50)

Gletsos et al. [30] 2003
– COM
– FOS

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Valavanis et al. [31] 2004

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Mala et al. [32] 2005
– OWT & FOS
– OWT & COM

– steatosis (70)
– cirrhosis (70)

Huang et al. [33] 2006 – AC
– malignant (80)
– benign (84)

Stoitsis et al. [34] 2006

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Mougiakakou et al. [35] 2007

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Ganeshan et al. [36] 2009
– filters & FOS
– filters & COM

– absence of malignancy (15)
– malignancy not related to the liver (9)
– liver metastases (8)

Kumar et al. [38] 2013

– FOS
– COM
– CCT & FOS
– CCT & COM
– WCT & FOS
– WCT & COM

– HCC (150)
– hemangioma (150)
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features obtained from the co-occurrence matrices (here, the correlation and sum
entropy turned out to be the best ones) and its fractal dimension, evaluated from a
fractional Brownian motion model (the method developed by authors and described
in their work). A probabilistic Neural Network (NN) [39] was used as a classifier.
The proposed system was tested on 30 liver cases and shown to be quite efficient.

Another system, described in [28], was also able to recognize a liver region (nor-
mal and abnormal) on CT images. The system used the gray-level histogram features
(mean gray level, standard deviation, and skewness) in combination with the COM-
based features (entropy, homogeneity), and a back-propagation Neural Network [40]
as a classifier. The system was able to recognize correctly more than 95% of analyzed
cases.

Sariyanni et al. [29] tried to recognize a healthy liver tissue and a tissue affected
by hepatocellular carcinoma (HCC). As texture descriptors, they used a fractal dimen-
sions calculated from four different methods: the power spectrum method (belong-
ing to the fractional Brownian motion methods) [21], the box-counting method, the
morphological fractal estimator (belonging to the area measurement methods) [22],
and the kth-Nearest Neighbor estimator (k-NN), proposed by authors. The Fuzzy C-
Means algorithm [41] was then applied for clustering the input data into two clusters.
It revealed that the k-NN estimator, introduced by authors, outperforms the other
methods.

The work of Gletsos et al. [30] described a CAD system adapted to the recog-
nition of four types of liver tissue: healthy, liver cysts, hemangioma, and hepato-
cellular carcinoma. It used 48 texture descriptors derived from the co-occurrence
matrices, and the average gray level of the Regions of Interest (ROIs). The classifi-
cation module consisted of three sequentially placed feed-forward Neural Networks,
each adapted to perform a pairwise classification. The first one distinguished nor-
mal from pathological liver regions, the second one recognized pathological regions
and distinguished cysts from "other pathologies", and the third one distinguished be-
tween "other pathologies" – hemangioma and HCC. Three feature selection tech-
niques were used separately for each binary classifier: the Sequential Forward Selec-
tion (SFS) [42], the Sequential Floating Forward Selection (SFFS) [43], and Genetic
Algorithm for feature selection (GAs) [44] with the implementation based on the
work [45]. The feature selection used a criterion based on the squared Mahalanobis
distance between the populations of the two classes for each binary NN classifier.
Finally, several subsets of features were considered for classification experiments.
The CAD performance was tested with validation and testing sets, each containing
a portion (1/5) of the initial data. Results obtained for different sub-sets of features
differed from one another. The best overall classification accuracy was of 97%.
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A more developed system was presented by Valavanis et al. [31]. It was eval-
uated in the process of recognition of four types of focal liver lesions, the same
that were considered in [30]. The number of ROIs for each tissue class was also the
same. Here, the relevance of the five texture characterization methods was assessed.
Among the tested methods were: the method based on the gray-level histogram, the
co-occurrence matrices, the run length matrices, the Laws’ texture energy measures,
and the fractal model. The most useful features were found using a feature selection,
based on Genetic Algorithms. Classification was carried out by Neural Networks
(three-layer feed-forward NN and Radial Basis Function (RBF) NN) and statistical
methods (k-NN [46] with different k). Here, the best classification accuracy was equal
to 90.63%. Similar works have been described, some years later, in [34], and further
– in [35]. The continuation of this research has finally resulted in the creation of
a telematics-enabled system for image archiving, management, and diagnosis sup-
port [37]. This integrated CAD system performed an image preprocessing, a semi-
automatic image segmentation, an extraction of texture features, and a classification.

Another CAD system was proposed by Mala et al. [32], in order to classify two
diffused liver diseases, steatosis and cirrhosis. First, it performed an automatic extrac-
tion of liver, using adaptive threshold and morphological processing. Second, images
were transformed into frequency domain using the Orthogonal Wavelet Transform
(OWT). Then, the statistical features were calculated based on the horizontal, the
vertical, and the diagonal details extracted from the images. They included: mean,
standard deviation, contrast, entropy, homogeneity, and angular second moment. Fi-
nally, the two-layer probabilistic Neural Network was used as a classifier. The system
was trained on 40 cases and tested on 100 ones. Both classes were equally numerous
in the train end the test set. The classification accuracy of 95% was achieved.

The next CAD example was described by Huang et al. [33]. Their system was
adapted for differentiation between two groups of liver tumors: malignant (primary
tumor – HCC or secondary tumors – metastases) and benign. As texture parame-
ters, only the normalized autocorrelation coefficients were used. The classification
was performed with the Support Vector Machines (SVM) [47]. The k-fold cross-
validation [48] was used to evaluate the performance of the proposed diagnostic sys-
tem. The classification accuracy was of nearly 82%.

The objective of yet another research, presented by Ganeshan et al. [36], was to
determine whether the textures corresponding to the apparently healthy liver regions
were altered by the presence of malignancy in patients with colorectal cancer. Three
types of liver tissue were considered. The first one corresponded to an absence of ma-
lignancy, the second one – to the presence of a malignancy but not related to the liver,
and the third one – to the presence of liver metastases. Here the frequency methods
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in combination with statistical approaches were used to characterize hepatic tissue.
The following statistical descriptors of texture were derived from both unfiltered and
filtered images (highlighting fine, medium, and coarse texture): mean gray level, en-
tropy, and uniformity. The experiments showed that textural features obtained from
the filtered images were statistically different for each of the three considered tissue
classes.

The most recently, Kumar et al. [38] developed a texture-based CAD system,
specialized in discrimination between malignant (hepatocellular) and benign (he-
mangioma) liver tumors. Their work tested several sets of features: gray-level tex-
ture features (first order statistics and second order, COM-based texture descriptors),
Wavelet Coefficient Texture (WCT) features (first- and second- order statistics), and
Contourlet Coefficient Texture (CCT) features [49, 50] (also of the first- and of the
second order). As numbers of considered features were quite large (in total about
300 features were tested) the Principal Component Analysis (PCA) [51] was applied
for a dimensionality reduction. The ability of each feature set in differentiating ma-
lignant from benign tissues was assessed with a probabilistic Neural Network classi-
fier. The areas under the Receiver Operating Characteristic (ROC) curves (AUC) [52]
were used for measuring the system performance. The highest classification accuracy
(96.7%), as well as the highest sensitivity and specificity (97.3% and 96%, respec-
tively) were obtained with the contourlet coefficient co-occurrence features.

2.2 Texture analysis of single liver CT image acquired after administration of
contrast agent

Preliminary studies on processing of contrast-enhanced CT images for semi-
automatic recognition of liver disorders were reported by Krętowski [53]. The work
aimed at comparing the classification accuracy obtained for the three acquisition mo-
ments, typical for the CT of abdominal organs (without injection, arterial phase, por-
tal phase). Five types of liver tissue were differentiated: the healthy liver and four
types of its metastases: insulinoma, adenocarcinoma (kidney), adenocarcinoma (in-
testine) and leiomyosarcoma. The image database was divided into three parts, each
of which being composed of images corresponding to one (of the three considered)
acquisition moment. The tissue was characterized by features calculated with the
FOS, GM, COM and RLM methods. The texture classification was performed by
oblique (multivariate) Dipolar Decision Trees [54], separately for each of the three
parts of the database. The classification accuracy for acquisitions with contrast mate-
rial outperformed the results obtained for those without contrast. The highest classi-
fication accuracy was observed for the arterial phase.
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The systems for liver tissue characterization and recognition from enhanced CT
images began to appear after this moment [55–65]. The texture analysis in these
systems was performed with the following methods: FOS, COM, RLM, GLDM, LTE,
or frequency methods (see the comparison in Table 2). However, all of those systems
were still limited to the analysis of only one image at a time and they did not consider
the changes in texture properties during the propagation of contrast material.

For example, Bilello et al. [55] presented a system working on portal-phase im-
ages. It combined the methods for detection, characterization and classification of
liver hypodense hepatic tissue (cysts, hemangiomas, and metastases). Its texture was
characterized with the frequency methods. Then the Support Vector Machines were
used to perform a pairwise lesion classification. In order to evaluate the system per-
formance, the Free-Response Receiver Operator Characteristic Curves (FROC) [66]
were utilized. The system assured perfect discrimination (100% of correctly recog-
nized cases) between hemangiomas and cysts, good discrimination between cysts and
metastases (at 95% sensitivity for detection of metastases, only about 5% of cysts
were incorrectly classified as metastases), and was least accurate in discriminating
between hemangiomas and metastases (at 90% sensitivity for detection of heman-
giomas, about 28% of metastases were incorrectly classified as hemangiomas).

The system described by Lambrou et al. [56], differentiated between healthy and
tumorous tissue. To extract texture features, it used a wavelet transform method, in
combination with three statistical methods (based on the gray level histogram, the co-
occurrence matrices, and the run length matrices). Three statistical classifiers were
employed in the study: minimum distance classifier, quadratic minimum distance
classifier, and Bayes classifier [46]. The performance of the classifiers was assessed
with the leave-one-out method [48]. The first- and the second order statistics turned
out to be better (yielding the classification accuracies exceeding 90%) than those
derived from the wavelet-based techniques.

Another system, developed by Smutek et al. [57], focused on the analysis of
focal liver lesions (HCC and cysts). It used the first- and the second order texture
features (COM-based). The analyzed images corresponded to the late portal phase.
In the system, an ensemble of Bayesian classifiers was applied. The classification
accuracy was assessed by leave-one-out method. The system was able to classify
correctly even 100% of recognized cases.

Mala et al. [58] presented a system adapted to the recognition of four types
of liver diseases: HCC, cholangiocarcinoma, hemangeoma and hepatoadenoma. This
system was able to automatically detect the areas affected by a disease, to characterize
a tissue (using Biorthogonal Wavelet Transform (BWT) and co-occurrence matrices
derived from the transformed images), to select the best texture features, and, finally,
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Table 2. Comparison of systems based on single liver CT images acquired after administration of con-
trast agent

Work Year TA Methods Tissue Classes and number of cases

Krętowski [53] 2002

– FOS
– GM
– COM
– RLM

– healthy (192)
– insulinoma (126)
– adenocarcinoma / kidney (104)
– adenocarcinoma / intestine (107)
– leiomyosarcoma (68)

Bilello et al. [55] 2004 – filters
– hemangiomas (11)
– cysts (25)
– metastases (52)

Lambrou et al. [56] 2006
– WT & FOS
– WT & COM
– WT & RLM

– healthy (425)
– tumor (425)

Smutek et al. [57] 2006
– FOS
– COM

– HCC (425)
– cysts (110)

Mala et al. [58] 2007 – DTW & COM

– HCC (60)
– cholangiocarcinoma (60)
– hemangeoma (60)
– hepato adenoma (30)

Lee et al. [59] 2009
– FOS
– GTF

– cyst (70)
– hepatoma (70)
– cavernous hemangioma (33)
– normal liver (60)

Wang et al. [61] 2009

– FOS
– COM
– GLDM
– RLM

– HCC (30)
– hemangioma (30)
– normal (30)

Mala et al. [62] 2010
– BWT & FOS
– BWT & COM)

– fatty (100)
– cirrhotic (100)

Kayaalti et al. [63] 2014

– COM
– RLM
– GTDM
– LTE
– DWT
– DFT
– GF
– FOS

– fibrosis, stage 0 (21)
– fibrosis, stage 1 (16)
– fibrosis, stage 2 (12)
– fibrosis, stage 3 (16)
– fibrosis, stage 4 (13)
– fibrosis, stage 5 (13)
– fibrosis, stage 6 (25)

Rao et al. [64] 2014
– filters & FOS
– filters & COM

– without metastases (15)
– synchronous metastases (10)
– metachronous metastases (4)

Simpson et al. [65] 2014 – COM
– postoperative liver failure (12)
– no liver failure (24)
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to classify tissues, using a probabilistic Neural Network. The BWT enabled to obtain
horizontal, vertical, and diagonal details of images. Then, 10 features were extracted
for each of three resulting images. Feature selection was performed here with a Se-
quential Backward Elimination (SBE) [42]. Regarding the classification experiments
– all the available data were randomly divided into two equally numerous sets (for
training and testing). Each experiment was repeated 5 times. The best classification
result was of 90.2%.

The aim of another work [59] was to automatically discriminate liver diseases
using a sigmoid Radial Basis Function Neural Network with growing and pruning
algorithm (described by the authors). This time cyst, hepatoma, cavernous heman-
gioma, and normal liver tissue were recognized. The ROIs were characterized using
gray level and Gabor Texture Features (GTF) [67, 68]. The ROC curves were used
to evaluate the diagnosis performance, and the area under ROC curve measured the
classification accuracies. The best classification result exceeded 99%.

The study presented in [60] aimed at the assessment of the utility of texture
analysis of liver CT images, and at the comparison of the abilities of texture analysis
and hepatic perfusion CT to help predict survival for patients with colorectal cancer.
The texture analysis comprised two stages. The first one was the image filtration
(here, a Laplacian of Gaussian band-pass filter was chosen). The second one was
the quantification of texture (here, the mean gray-level intensity and uniformity were
used). The study provided preliminary evidence that analysis of liver texture on portal
phase CT images was potentially a superior predictor of survival for patients with
colorectal cancer than the CT perfusion imaging.

Wang et al. [61] tested yet another diagnostic system, which worked with the
three types of liver tissue: HCC, hemangioma, and normal one. This system used
four texture analysis methods (based on the gray level histogram, the co-occurrence
matrices, the gray level difference matrices, and the run length matrices). As a clas-
sifier the Support Vector Machines were used, and two strategies were considered in
order to ensure a multi-class classification: One-Against-All (OAA) [69] and One-
Against-One (OAO) [70]. The performance of the CAD system was estimated by the
5-fold cross-validation. The experiments on 90 ROIs, described by set of 22 textural
features, gave the overall classification accuracy of about 94% and 98%, for the OAA
and the OAO strategy, respectively.

In yet another work [62], a CAD system used the wavelet-based statistical tex-
tural features as tissue descriptors. The system was able to extract the liver, and to
recognize between fatty and cirrhotic liver tissue. In this work, the original images
were first decomposed using a biorthogonal wavelet transform. Then, as in the previ-
ous work of the same team [32], the second order statistical features were extracted in
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horizontal, vertical and diagonal directions. After performing a feature selection, the
most robust texture descriptors were fed to the three types on Neural Networks. The
10-fold cross-validation procedure was used to evaluate the system abilities. The ex-
periments on 200 patients resulted in quite high percentages of correctly recognized
characters (reaching 96%).

The most recent studies, published this year, are also based on texture analysis of
contrast-enhanced CT images, acquired at portal venous phase [63–65]. For example,
Kayaalti et al. [63] recognized seven possible stages of liver fibrosis. For this pur-
pose, eight methods for texture feature extraction were tested. They were based on:
co-occurrence matrix, run length matrix, Gray Tone Difference Matrix (GTDM) [71],
Laws’ filters, Discrete Wavelet Transform [72], Discrete Fourier Transform (DFT),
Gabor Filters (GF) [73], and first order statistics. For each combination of classes, a
sequential floating forward selection and exhaustive search methods were used in or-
der to find the best texture descriptors. The pairwise classification experiments with
Support Vector Machines and k-NN classifier showed that DWT, Gabor, COM, and
Laws’ features were more successful than the others. The performances of the classi-
fiers were assessed by 2- or 3-fold cross-validation. When only 5 features were used,
the mean classification accuracy in pairwise group comparisons was approximately
95% for both the k-NN and the SVM method.

Rao et al. [64] evaluated the potential of analysis of the whole liver with ap-
parently disease-free parenchyma, for discriminating between three types of colorec-
tal cancer patients: without liver metastases, with synchronous liver metastases, and
with metachronous metastases. In their work, a texture characterization comprised
two stages. First, images were filtered with a Laplacian of Gaussian band-pass filter
with different bandwidths. Afterwards, three features were calculated from the fil-
tered and the unfiltered images: entropy, uniformity, and mean gray-level intensity.
The ROC analyses were conducted to determine the diagnostic performance of the
considered features. As a result, mean entropy and uniformity in patients with syn-
chronous metastases were significantly different compared with the non-metastatic
patients, while texture parameters for the metachronous metastases group were not
significantly different neither from the non-metastatic group nor from synchronous
metastases group.

Finally Simpson et al. [65] used some COM-based features of preoperative CT
images of the liver, in order to predict a postoperative liver failure after hepatic resec-
tion. The study was undertaken on 36 patients. It was discovered that the following
features: contrast, correlation, cluster prominence, and normalized inverse difference
moment were significantly different between patients with and without postoperative
liver failure.
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2.3 Multi-image texture analysis, involving non-enhanced and
contrast-enhanced liver CT images

In [74] a simultaneous analysis of triplets of liver textures, corresponding to the three
aforementioned typical acquisition moments, was proposed. At first, the three cor-
responding simple textures were characterized separately by features obtained from
gray-level histogram, Laws’ filtering, COM and RLM methods. As a result, three fea-
ture sets, each characterizing one of the three textures, were obtained. Then, all the
features from those three sets were placed together in one feature vector, character-
izing a multi-image ("triphase") texture. As a classifier, an oblique Decision Dipolar
Tree was used. The 5-times repeated 10-fold cross-validation procedure was applied
to estimate the classification accuracy. Three types of liver tissue were recognized:
healthy liver and its two main primary malignant tumors (HCC and cholangiocarci-
noma). The classification accuracies obtained for triphase textures were significantly
higher than those corresponding to each acquisition moment separately. For example,
the best classification accuracies obtained with the set of the 8 RLM-based features
were: 95.5%, 93.9%, and 95.5% for the no-contrast, the arterial, and the portal phase,
respectively, while considering simultaneously the three phases resulted in the 99.7%
of correctly diagnosed cases. Further work of the same team [75] has confirmed that
a simultaneous analysis of images, corresponding to the three acquisition moments
could lead to better results that the simple texture analysis – performed when only
one acquisition moment is considered.

An approach similar to the two preceding ones was used by Quatrehomme et
al. [76]. In their work, the analysis of multi-image textures was performed on four-
phase CT scans of the liver: the first one – taken in pre-injection phase, the next three
ones – after injection of contrast material, in arterial, portal and late phase. Five types
of hepatic lesions were differentiated: cysts, adenomas, haemangiomas, HCC and
metastases. Four techniques for feature extraction were used. They based on: gray-
level histogram, Gaussian Markov Random Fields (GMRF) measures [77], LTE mea-
sures, and Unser Histograms Statistics (UHS) [78]. Features, calculated separately for
four considered acquisition moments were placed side by side in a multiphase vector,
describing four-phase textures. As a classifier, the SVM were used. Its performance
was evaluated by the leave-one-out technique. The results obtained with multi-image
approach were significantly better than for the case of a single-image texture analysis.

A multi-phase liver images, derived from the four image series (non-enhanced,
arterial, portal, and delayed) were also considered by Chi et al. [79]. Their system
was designed in order to help radiologists in characterization of various focal liver le-
sions. Six types of lesions were considered: HCC, hemangioma, cysts, liver abscess,
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Focal Nodular Hyperplasia (FNH), and metastases. The latter class included: pan-
creatic carcinoma, sigmoid carcinoma, rectal carcinoma, colorectal carcinoma, and
gallbladder carcinoma. The system first localized a lesion on multi-phase CT using
a hybrid generative-discriminative method [80]. Then, a lesion was selected in one
phase, and nonrigid B-spline registration [81] was employed in order to align the im-
ages of all the four phases. The tissue was characterized by a simultaneous analysis
of textures corresponding to the four considered phases. Feature vectors were com-
posed of multi-phase density characteristics and combinations of the co-occurrence
matrix-based parameters, calculated for each of four phases. The system compared
a tested lesion with the model lesions from a reference database (characterized by
vectors of features), and measured their similarities using the L1-norm-based simi-
larity scores. The reference cases which were the most similar to the examined one
were finally provided to the users for their later studies. The system was tested on a
database of 69 cases and evaluated using the precision-recall curves and the "Bull’s
Eye Percentage" (BEP) score [82]. A multi-image texture analysis resulted in a BEP
value of 78%, while the best results for a single-phase cases were about 63% – 65%.

The aim of two other studies [83, 84] was to determine preliminarily how some
of the hepatic texture features (entropy, uniformity) change during the propagation of
contrast agent and to assess whether the differences in these changes between tumor-
ous and non-tumorous liver tissue were statistically significant. The potential utility
of Dynamic Contrast-Enhanced (DCE) texture analysis of the liver was compared
to the potential of the measurements of hepatic attenuation and perfusion, obtained
from the kinetic modeling. The study concerned patients following a resection of col-
orectal cancer and having apparently normal hepatic morphology. It showed that the
temporal changes of the two considered textural features were different from those
for hepatic attenuation and they were statistically significant between tumorous and
non-tumorous patients. It also demonstrated that the textural features were less sen-
sitive to changes in CT acquisition conditions (current and voltage variations).

In yet another work [85], four images of the same slice location, corresponding
to subsequent moments of contrast agent propagation (pre-contrast, arterial, portal
venous and delayed phase) were analyzed simultaneously. Here, four hepatic tissue
classes were differentiated: normal, cyst, haemangioma and HCC. In contrast to the
above cited works, this work considered only the combinations of the mean pixel
values of ROI in different phases as temporal features. These were: relative signal
intensity, intensity change tendency, and signal enhancement ratio. In addition, a
few sets of textural features (gray-level histogram-based, COM-based, and selected
features) were used in the four single-phase classification tasks. As a classifier, three
hierarchically organized binary SVMs were used. The classification accuracy was
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assessed by k-fold cross validation. Here, the application of temporal characteristics
did not result in better tissue recognition, in comparison with the best results obtained
with textural features for each separate moment of contrast agent propagation. It is
with a set of combined features (FOS, COM, and temporal) that the best classification
accuracy was achieved: 95.5%, 97.2% and 96.4% for normal vs abnormal, cyst vs
other disease and carcinoma vs haemangioma sub-problems, respectively.

Finally, in [86], 61 textural features were evaluated in the task of distinguish-
ing between four classes of liver tissue: HCC, cholangiocarcinoma, cirrhosis, and
healthy. The study involved: 4 first order statistics, 4 gradient-based features, 11
COM features, 8 RLM features, 5 GLDM features, 19 features obtained with Laws’
filtering, 2 fractal dimension estimates, 7 TFCM-based statistics, and 1 normalized
autocorrelation coefficient. Such features were calculated separately for each for the
three considered moments of contrast agent propagation: no-contrast, arterial phase,
and portal phase. In total 3×61 = 183 tissue descriptors were considered. The choice
of the most useful features proceeded in two stages. At the beginning, unstable fea-
tures (sensitive to small changes in ROI size and/or in ROI position) were rejected.
Then, a simplified Monte Carlo feature selection (initially proposed by Draminski
et al. [87]) was performed in order to find the most robust features. Classification
experiments were performed using an Adaptive Boosting (AdaBoost) algorithm [88]
with a C4.5 tree [89]. They revealed that a small set of 12 features was able to en-
sure classification accuracy exceeding 90%, while all of the 183 features provided an
accuracy rate of 88.94%.

Table 3 summarizes the most important information about selected CAD sys-
tems, adapted for characterization of multi-image liver CT textures.

3. Conclusion

A vast variety of CAD systems adapted for recognition of liver disorders from CT im-
ages were developed over the past 20 years. The most frequently diagnosed patholo-
gies were: primary malignant liver tumors (like HCC or cholangiocarcinoma), sec-
ondary tumors (different types of metastases), benign liver tumors (hemangiomas) or
other benign liver changes, like steatosis (fatty change), cirrhosis, or fibrosis. Despite
numerous proposals for texture analysis methods, that can be found in the literature,
the presented systems use only a few approaches for texture characterization. The
most popular are those that use: co-occurrence matrices, run length matrices, first or-
der statistics, fractal models, Laws’ texture energy measures, and different frequency
methods. Each of described systems was tested on different data (different were: im-
age resolutions – spatial and in gray levels, preprocessing techniques, numbers of
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Table 3. Comparison of selected CAD systems based on multi-image texture analysis, involving non-
enhanced and contrast-enhanced liver CT images

Work Year TA Methods Tissue Classes Phases

Duda et al. [74] 2006

– FOS
– COM
– RLM
– LTE

– healthy (150)
– HCC (150)
– cholangiocrcinoma (150)

– no contr.
– arterial
– portal

Ye et al. [85] 2009
– FOS
– COM

– normal (64)
– cysts (14)
– haemangioma (27)
– HCC (26)

– no contr.
– arterial
– portal
– delayed

Quatrehomme et al. [76] 2013

– FOS
– MRF
– LTE
– UHS

– cysts (25)
– adenomas (10)
– HCC (13)
– metastases (38)

– no contr.
– arterial
– portal
– delayed

Chi et al. [79] 2013
– FOS
– COM

– HCC (16)
– hemangioma (16)
– cysts (15)
– liver abscess (7)
– FNH (5)
– metastases (10)

– no contr.
– arterial
– portal
– delayed

Duda et al. [86] 2013

– FOS
– COM
– RLM
– GLDM
– GM
– TFCM
– AC
– LTE

– normal (573)
– cirrhosis (433)
– HCC (319)
– cholangiocarcinoma (222)

– no contr.
– arterial
– portal
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ROIs, ROI sizes, classification algorithms, ...). Different methods were used for the
evaluation of the system classification performance (leave-one-out, cross-validation,
using a training set). Therefore, it is difficult to conclude which TA method could be
the best possible one. Nevertheless, it can be noticed, that some methods have proven
to be reliable for each classification task. For example, the COM-based method was
successfully used for both the classification of non-enhanced images (acquired with-
out contrast agent) and of enhanced images (acquired after administration of contrast
agent). Other methods were frequently considered only for one type of images. In the
case of the cited works, the fractal model-based texture features were of frequent con-
sideration for non-enhanced images, whereas the first order statistics and run length
matrices were most often utilized for the enhanced ones. Some experiments have also
shown that image pre-filtering (like with WT, DWT, BWT, DFT), performed before
extraction of the first- and the second order texture features, could lead to better tissue
characterization (in terms of classification process) than the use of statistical meth-
ods alone. The comparison of results for non-enhanced an enhanced single-image
textures shows that considering the texture changes introduced with the presence of
the contrast agent could be a better solution. Finally, it is with the multi-image texture
analysis, that the best results could be achieved.

Abbreviations

AdaBoost: Adaptive Boosting algorithm
AUC: Area Under the ROC Curve
BEP: "Bull’s Eye Percentage"
BWT: Biorthogonal Wavelet Transform
CAD: Computer-Aided Diagnosis
CCT: Contourlet Coefficient Texture features
COM: Co-Occurrence Matrix
CT: Computed Tomography
DCE: Dynamic Contrast-Enhanced
DFT: Discrete Fourier Transform
DWT: Discrete Wavelet Transform
FM: Fractal Model
FNH: Focal Nodular Hyperplasia
FOS: First Order Statistics
FROC: Free-Response ROC Curves
GAs: Genetic Algorithm for feature selection
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GF: Gabor Filters
GLDM: Gray Level Difference Matrix
GLH: Gray Level Histogram
GM: Gradient Matrix
GMRF: Gaussian Markov Random Fields
GTDM: Gray Tone Difference Matrix
GTF: Gabor Texture Features
HCC: Hepatocellular Carcinoma
k-NN: k-Nearest Neighbors (classifier)
LTE: Laws’ Texture Energy
NA: Autocorrelation Coefficients
NN: Neural Network (classifier)
OAA: One-Against-All
OAO: One-Against-One
OWT: Orthogonal Wavelet Transform
PCA: Principal Component Analysis
RBF: Radial Basis Function
RLM: Run Length Matrix
ROC: Receiver Operating Characteristic
ROI: Region of Interest
SBE: Sequential Backward Elimination
SFFS: Sequential Floating Forward Selection
SFS: Sequential Forward Selection
SVM: Support Vector Machines (classifier)
TA: Texture Analysis
TFCM: Texture Feature Coding Method
UHS: Unser Histograms Statistics
WCT: Wavelet Coefficient Texture features
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ANALIZA TEKSTUR JAKO NARZĘDZIE
WSPOMAGANIA DECYZJI MEDYCZNYCH.

CZĘŚĆ 2: KLASYFIKACJA PATOLOGII WĄTROBY
NA OBRAZACH TOMOGRAFII KOMPUTEROWEJ

Streszczenie: Analiza tekstur jest szeroko stosowana w wielu cyfrowych systemach wspo-
magania decyzji medycznych, na podstawie danych obrazowych. Pozwala ona wydobyć z
obrazu istotne szczegóły, których nie można dostrzec podczas analizy wizualnej. Pierwsze
próby analizy tekstur miały miejsce w latach siedemdziesiątych ubiegłego wieku. Od tamtej
pory zaproponowano wiele metod analizy tekstur. Trudno jest jednak wskazać metodę uni-
wersalną, która zapewniłaby zadowalające wyniki dla każdego problemu diagnostycznego.
Niniejsza praca stanowi przegląd metod analizy tekstur, stosowanych do opisu tkanki wątro-
bowej na obrazach tomografii komputerowej. Przedstawia informacje o około czterdziestu
systemach diagnostycznych, zaproponowanych w ciągu ostatnich dwóch dekad, poświęco-
nych (pół)automatycznemu wykrywaniu lub / i klasyfikacji schorzeń wątroby. Opisywane
systemy zostały podzielone na trzy kategorie: (i) opierające się na teksturze pojedynczego
obrazu, pozyskanego bez podawania pacjentowi środka kontrastującego, (ii) opierające się
na teksturze pojedynczego obrazu, pozyskanego po podaniu pacjentowi środka kontrastują-
cego, oraz (iii) opierające się na jednoczesnej analizie wielu tekstur. Te ostatnie odnoszą się
do analizy zestawów tekstur przedstawiających ten sam wycinek wątroby, lecz odpowiada-
jących różnym stężeniom środka kontrastowego w jej naczyniach krwionośnych.

Słowa kluczowe: obrazowanie medyczne, analiza obrazów, tekstura, selekcja cech, wspo-
maganie decyzji medycznych, diagnoza wspomagana komputerowo, wątroba, tomografia
komputerowa

Artykuł zrealizowano w ramach pracy statutowej S/WI/2/2013.
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