Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work reported the successful synthesis of ilmenite-spinel (1 − x)NiTiO3-xMnFe2O4 (x = 0, 0.05 and 0.10) composites by a simple sol-gel method. Phase formation of composites was analyzed by the X-ray diffraction method. All the synthesized samples formed diphasic ilmenite-ferrite composites without any trace of impurity or intermediate phase. The optical properties of synthesized composites were characterized by diffuse reflectance UV–visible spectroscopy. MnFe2O4 phase modified the optical band gap of NiTiO3 material and shifted its optical bandgap value toward lower energy. Ferroelectric and magnetic hysteresis loops were investigated at room temperature. The hysteresis loops indicated the typical ferromagnetic and ferroelectric nature of all composites at room temperature. In P-E loops, the remanent polarization (Pr) and saturation polarization (Ps) showed a slight increase in the sample with 5% MnFe2O4 phase addition. However, the lossy P-E loop was observed in the sample with the addition of 10% MnFe2O4. The presence of ferrite MnFe2O4 phase in NiTiO3 material enhanced the magnetic properties of NiTiO3 at room temperature. The M-H loops of NiTiO3-MnFe2O4 composites presented a ferromagnetic behavior with a dramatic increase in saturation magnetization with an increase of ferrite phase addition.
Wydawca
Czasopismo
Rocznik
Tom
Strony
43--53
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Materials Science and Engineering, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
autor
- School of Engineering Physics, Ha Noi University of Science and Technology, Hanoi, Vietnam
Bibliografia
- [1] Hill NA. Why Are There so Few Magnetic Ferroelectrics. J Phys Chem B. 2000;104:6694–6709.
- [2] Alam M, Talukdar S, Mandal K. Multiferroic properties of bilayered BiFeO3/CoFe2O4 nano-hollowspheres. Mater Lett. 2018;210:80–3.
- [3] Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys. 2008;103(3).
- [4] Ruiz-Preciado MA, Kassiba A, Gibaud A, Morales-Acevedo A. Comparison of nickel titanate (NiTiO3) powders synthesized by sol-gel and solid state reaction. Mater Sci Semicond Process. 2015;37:171–8.
- [5] Heller GS, Stickler JJ, Kern S, Wold A. Antiferromagnetism in NiTiO3. J Appl Phys. 1963;34(4):1033.
- [6] Thang P Van, Dung DD, Bac LH, Hung PP, Ngoc TVD. Structural, Optical, Ferroelectric and Magnetic Properties of NiTiO3 Ceramic Synthesized by Citrate Gel Method. Int J Nanosci. 2021;20(1):1–7.
- [7] Acharya T, Choudhary RNP. Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic. J Electron Mater. 2015;44(1):271–80.
- [8] Tursun R, Su Y, Yu Q, Tan J. Room-temperature coexistence of electric and magnetic orders in NiTiO3 and effect of ethylene glycol. Mater Sci Eng B. 2018;228 (November 2017):96–102.
- [9] Hung PP, Dung DD, Tuan NH, Trung NN, Bac LH. Iron induced room temperature ferromagnetism in ilmenite NiTiO3 materials. Mater Lett. 2017;209(33):284–6.
- [10] Tursun R, Su YC, Yu QS, Tan J, Hu T, Luo ZB, et al. Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1−xAxTiO3 (A = Mn, Fe, Co, Cu, Zn; x = 0, 0.05, and 0.1). J Alloys Compd. 2019;773:288–98.
- [11] Lenin N, Karthik A, Sridharpanday M, Selvam M, Srither SR, Arunmetha S, et al. Electrical and magnetic behavior of iron doped nickel titanate (Fe3+/NiTiO3) magnetic nanoparticles. J Magn Magn Mater. 2016;397:281–6.
- [12] Popa M, Bruna P, Crespo D, Calderon Moreno JM. Single-phase MnFe2O4 powders obtained by the polymerized complex method. J Am Ceram Soc. 2008;91(8):2488–94.
- [13] Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, et al. Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B – Condens Matter Mater Phys. 2001;63(18):2–7.
- [14] Rajalakshmi R, Remya KP, Viswanathan C, Ponpandian N. Enhanced electrochemical activities of morphologically tuned MnFe2O4 nanoneedles and nanoparticles integrated on reduced graphene oxide for highly efficient supercapacitor electrodes. Nanoscale Adv. 2021;3(10):2887–901.
- [15] Baig MM, Yousuf MA, Agboola PO, Khan MA, Shakir I, Warsi MF. Optimization of different wet chemical routes and phase evolution studies of MnFe2O4 nanoparticles. Ceram Int. 2019;45(10):12682–90.
- [16] Atif M, Nadeem M, Khalid W, Ali Z. Structural, magnetic and impedance spectroscopy analysis of (0.7)CoFe2O4+(0.3)BaTiO3 magnetoelectric composite. Mater Res Bull. 2018;107(May):171–9.
- [17] Grigalaitis R, Vijatović Petrović MM, Bobić JD, Dzunuzovic A, Sobiestianskas R, Brilingas A, et al. Dielectric and magnetic properties of BaTiO3-NiFe2O4 multiferroic composites. Ceram Int. 2014;40(4):6165–70.
- [18] Remya KP, Rajalakshmi R, Ponpandian N. Development of BiFeO3/MnFe2O4ferrite nanocomposites with enhanced magnetic and electrical properties. Nanoscale Adv. 2020;2(7):2968–76.
- [19] Jain A, Wang YG, Wang N, Li Y, Wang FL. Tuning the dielectric, ferroelectric and electromechanical properties of Ba0.83Ca0.10Sr0.07TiO3-MnFe2O4 multiferroic composites. Ceram Int. 2020;46(6):7576–85.
- [20] Pachari S, Pratihar SK, Nayak BB. Enhanced magneto-capacitance response in BaTiO3–ferrite composite systems. RSC Adv. 2015;5(128):105609–17.
- [21] Ansari F, Bazarganipour M, Salavati-Niasari M. NiTiO3/NiFe2O4 nanocomposites: Simple sol-gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater Sci Semicond Process. 2016;43:34–40.
- [22] Bellam JB, Ruiz-Preciado MA, Edely M, Szade J, Kassiba AJ and AH. Visible-light photocatalytic activity of nitrogen-doped NiTiO3 thin films prepared by a cosputtering process. R Soc Chem. 2015;5:10551–9.
- [23] Amulya MAS, Nagaswarupa HP, Kumar MRA, Ravikumar CR, Kusuma KB. Sonochemical synthesis of MnFe2O4 nanoparticles and their electrochemical and photocatalytic properties. J Phys Chem Solids. 2021;148(July 2020):109661.
- [24] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
- [25] Rossman GR, Shannon RD, Waring RK. Origin of the yellow color of complex nickel oxides. J Solid State Chem. 1981;39(3):277–87.
- [26] Llusar M, García E, García MT, Esteve V, Gargori C, Monrós G. Synthesis and coloring performance of Nigeikielite (Ni,Mg)TiO3 yellow pigments: Effect of temperature, Ni-doping and synthesis method. J Eur Ceram Soc. 2015;35(13):3721–34.
- [27] Wood DL, Tauc J. Weak Absorption Tails in Amorphous Semiconductors. Phys Rev B. 1972 Apr 15;5(8):3144–51.
- [28] Madhan K, Murugaraj R. Investigation on Microstructural, Electrical and Optical Properties of Nd-Doped BaCo0.01Ti0.99O3 Perovskite. J Electron Mater. 2020;49(1):377–84.
- [29] Wang X, Jiang L, Li K, Wang J, Fang D, Zhang Y, et al. Fabrication of novel Z-scheme SrTiO3/MnFe2O4 system with double-response activity for simultaneous microwave-induced and photocatalytic degradation of tetracycline and mechanism insight. Chem Eng J. 2020;400(February):125981.
- [30] Chinnathambi A, Nasif O, Alharbi SA, Khan SS. Enhanced optoelectronic properties of multifunctional MnFe2O4 nanorods decorated Co3O4 nanoheterostructure: Photocatalytic activity and antibacterial behavior. Mater Sci Semicond Process. 2021;134(May):105992.
- [31] Ramana C V., Smith RJ, Hussain OM. Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Phys Status Solidi Appl Res. 2003;199(1):5–7.
- [32] Singh DJ, Xu Q, Ong KP. Strain effects on the band gap and optical properties of perovskite SrSnO3 and BaSnO3. Appl Phys Lett. 2014;104(1):1–5.
- [33] Pattanayak R, Raut S, Kuila S, Chandrasekhar M, Panigrahi S. Multiferroism of [Na0.5Bi0.5TiO3 – BaFe12O19] lead-free novel composite systems. Mater Lett. 2017;209:280–3.
- [34] Devan RS, Deshpande SB, Chougule BK. Ferroelectric and ferromagnetic properties of (x)BaTiO3+(1-x)Ni0.94Co0.01Cu0.05Fe2O4 composite. J Phys D Appl Phys. 2007;40:1864–8.
- [35] Manjusha, Rawat M, Yadav KL. Structural, dielectric, ferroelectric and magnetic properties of (x) CoFe2O4-(1-x)BaTiO3 composite. IEEE Trans Dielectr Electr Insul. 2015;22(3):1462–9.
- [36] Zhang H, Ke H, Zhang L, Wang W, Jia D, Miao P, et al. Ferroelectric properties of magnetoelectric CoFe2O4/Bi3.15Nd0.85Ti3O12 composite ceramics with coherent-lattice interfaces. Scr Mater. 2017;127:29–32.
- [37] Sharma A, Kotnala RK, Negi NS. Observation of multiferroic properties and magnetoelectric effect in (x)CoFe2O4-(1-x)Pb0.7Ca0.3TiO3 composites. J Alloys Compd. 2014;582:628–34.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-094ce5e0-d339-4b76-88e2-60482e15f9bb