PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fox H-functions as exact solutions for Caputo type mass spring damper system under Sumudu transform

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Closed form solutions for mathematical systems are not easy to find in many cases. In particular, linear systems such as the population growth/decay model, RLC circuit, mixing problems in chemistry, first-order kinetic reactions, and mass spring damper system in mechanical and mechatronic engineering can be handled with tools available in theoretical study of linear systems. One such linear system has been investigated in the present research study. The second order linear ordinary differential equation called the mass spring damper system is explored under the Caputo type differential operator while using the Sumudu integral transform. The closed form solution has been found in terms of the Fox H-function wherein different aspects of the solution can be obtained with variation in α ∈ 2 (1;2] and β ∈ 2 (0;1]: The classical mass spring damper model is retrieved for α = β = 1:
Rocznik
Strony
83--89
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Department of Basic Sciences and Related Studies Mehran University of Engineering and Technology Jamshoro 76062, Pakistan
Bibliografia
  • [1] Qureshi, S. (2020). Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan. Mathematics and Computers in Simulation, 178, 151-165.
  • [2] Huang, J., Ruan, S., Wu, X., & Zhou, X. (2018). Seasonal transmission dynamics of measles in China. Theory in Biosciences, 137(2), 185-195.
  • [3] Akgül, A., & Bonyah, E. (2019). Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto-Sivashinsky equation. Journal of Taibah University for Science, 13(1), 661-669.
  • [4] Akgül, A., Cordero, A., & Torregrosa, J.R. (2020). Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences, 43(3), 1349-1358.
  • [5] Akgül, A., & Karatas Akgül, E. (2019). A novel method for solutions of fourth-order fractional boundary value problems. Fractal and Fractional, 3(2), 33.
  • [6] Ali, K.K., Cattani, C., G´omez-Aguilar, J.F., Baleanu, D., & Osman, M.S. (2020). Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Chaos, Solitons & Fractals, 139, 110089.
  • [7] Almeida, R., & Qureshi, S. (2019). A fractional Measles model having monotonic real statistical data for constant transmission rate of the disease. Fractal and Fractional, 3(4), 53.
  • [8] Akgül, A. (2018). A novel method for a fractional derivative with non-local and non-singular kernel. Chaos, Solitons & Fractals, 114, 478-482.
  • [9] Osman, M.S., Zafar, A., Ali, K.K., & Razzaq, W. (2020). Novel optical solitons to the perturbed Gerdjikov-Ivanov equation with truncated M-fractional conformable derivative. Optik, 165418.
  • [10] Akgül, E.K. (2019). Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 023108.
  • [11] Qureshi, S., & Yusuf, A. (2019). Modeling chickenpox disease with fractional derivatives: From Caputo to Atangana-Baleanu. Chaos, Solitons & Fractals, 122, 111-118.
  • [12] Ali, K.K., Wazwaz, A.M., Mehanna, M.S., & Osman, M.S. (2020). On short-range pulse propagation described by (2+ 1)-dimensional Schr¨odinger’s hyperbolic equation in nonlinear optical fibers. Physica Scripta, 95(7), 075203.
  • [13] Baleanu, D., Fernandez, A., & Akgül, A. (2020). On a fractional operator combining proportional and classical differintegrals. Mathematics, 8(3), 360.
  • [14] Kumar, P., & Qureshi, S. (2020). Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator. Journal of Applied Mathematics and Computational Mechanics, 19(1), 57-66.
  • [15] Osman, M.S., & Ali, K.K. (2020). Optical soliton solutions of perturbing time-fractional nonlinear Schr¨odinger equations. Optik, 164589.
  • [16] Bas, E., Acay, B., & Ozarslan, R. (2019). Fractional systems with singular and non-singular kernels for energy efficient buildings. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 023110.
  • [17] Qureshi, S., & Kumar, P. (2019). Using Shehu integral transform to solve fractional order Caputo type initial value problems. Journal of Applied Mathematics and Computational Mechanics, 18(2), 75-83.
  • [18] Kumar, D., Kaplan, M., Haque, M., Osman, M.S., & Baleanu, D. (2020). A variety of novel exact solutions for different models with conformable derivative in shallow water. Frontiers in Physics, 8, 177.
  • [19] Arqub, O.A., Osman, M.S., Abdel-Aty, A.H., Mohamed, A.B.A., & Momani, S. (2020). A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics, 8(6), 923.
  • [20] Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., & Baleanu, D. (2019). Fractional modeling of blood ethanol concentration system with real data application. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(1), 013143.
  • [21] Osman, M.S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., & Zhou, Q. (2018). The unified method for conformable time fractional Schrodinger equation with perturbation terms. Chinese Journal of Physics, 56(5), 2500-2506.
  • [22] Gill, V., Modi, K., & Singh, Y. (2018). Analytic solutions of fractional differential equation associated with RLC electrical circuit. Journal of Statistics and Management Systems, 21(4), 575-582.
  • [23] Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier.
  • [24] Atangana, A., & Akgül, A. (2020). Can transfer function and Bode diagram be obtained from Sumudu transform. Alexandria Engineering Journal, Available online 3 January 2020.
  • [25] Zill, D.G. (2016). Differential Equations with Boundary-value Problems. Nelson Education
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0949c071-8f30-48a8-aa1c-f2a7c827fb12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.