PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On potential kernels associated with random dynamical systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (Θ, φ) be a continuous random dynamical system defined on a probability space (Ω, F, P) and taking values on a locally compact Hausdorff space E. The associated potential kernel V is given by [formula]. In this paper, we prove the equivalence of the following statements: 1. The potential kernel of (Θ, φ) is proper, i.e. V ƒ is x-continuous for each bounded, x-continuous function with uniformly random compact support. 2. (Θ, φ) has a global Lyapunov function, i.e. a function L : Ω x E → (0, ∞) which is x-continuous and L,(Θ tω, φ(t, ω)x) ↓0 as t ↑ ∞. In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.
Rocznik
Strony
499--515
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Universite de Tunis Elmanar Faculte des Sciences de Tunis Departement de Mathematiques TN-2092 Elmanar, Tunis, Tunisia
  • Al-Imam Muhammad Ibn Saud Islamic University College of Science Department of Mathematics and Statistics P.O. Box 90950, Riyadh 11623, Saudi Arabia
autor
  • Universite de Tunis Elmanar Faculte des Sciences de Tunis Departement de Mathematiques TN-2092 Elmanar, Tunis, Tunisia
  • Al-Imam Muhammad Ibn Saud Islamic University College of Science Department of Mathematics and Statistics P.O. Box 90950, Riyadh 11623, Saudi Arabia
autor
  • Universite de Tunis Elmanar Faculte des Sciences de Tunis Departement de Mathematiques TN-2092 Elmanar, Tunis, Tunisia
Bibliografia
  • [1] L. Arnold, Random Dynamical Systems, Springer, Berlin, 1998.
  • [2] L. Arnold, B. Schmalfuss, Lyapunov's second method for random dynamical systems, J. Differ. Equ. 177 (2001), 235-265.
  • [3] N.P. Bhatia, G.P. Szego, Stability Theory of Dynamical Systems, Grundl. Math. Wiss. 161, Springer, 1970.
  • [4] M.L. Bujorianu, M.C. Bujorianu, A Theory of Symbolic Dynamics for Hybrid Systems, [in:] Preprints of the 18th IFAC World Congress Milano (Italy), August 28 - September 2, 2011, pp. 8754-8759.
  • [5] M.L. Bujorianu, M.C. Bujorianu, H. Barringer, Systems Theory in an Analytic Setting, [in:] 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011, pp. 2901-2906.
  • [6] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1997.
  • [7] H. Craul, A uniformly exponential random forward attractor which is not a pullback attractor, Arch. Math. 78 (2002), 329-336.
  • [8] A. Hmissi, F. Hmissi, M. Hmissi, On gradient-like random dynamical systems, [in:] D. Fournier-Prunaret et al. (eds.), European Conference on Iteration Theory, Nant 2010, Esaim: Proceedings, 36, 2012, pp. 217-228.
  • [9] M. Hmissi, Semi-groupes deterministes, [in:] F. Hirsch, G. Mokobodzki (eds.), Semi-naire de Theorie du Potentiel Paris, No. 5, Lect. Notes in Math. 1393, Springer, 1989, pp. 135-144.
  • [10] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
  • [11] Z. Liu, The random case of Conley's theorem, Nonlinearity 19 (2006), 277-291.
  • [12] P.A. Meyer, Probability and Potentials, Blaisdell Publishing Company, Waltham, Massachusetts-Toronto-London, 1966.
  • [13] B. Oksendal, Stochastic Differential Equations, Universitex, Springer, Berlin, 6th ed., 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-094974c5-9c77-4637-86ee-28ab9d3a6177
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.