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ON POTENTIAL KERNELS ASSOCIATED
WITH RANDOM DYNAMICAL SYSTEMS
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Abstract. Let (0,¢) be a continuous random dynamical system defined on a probability
space (2, F,P) and taking values on a locally compact Hausdorff space E. The associated
potential kernel V' is given by

Viw,z) = | f(Oiw,o(t,w)z)dt, weQ zeE.

0\8

In this paper, we prove the equivalence of the following statements:

1. The potential kernel of (0,¢) is proper, i.e. Vf is z-continuous for each bounded,
z-continuous function f with uniformly random compact support.

2. (0,¢) has a global Lyapunov function, i.e. a function L : Q x E — (0,00) which is
z-continuous and L(6:w, p(t,w)z) | 0 as ¢ T oo.

In particular, we provide a constructive method for global Lyapunov functions for
gradient-like random dynamical systems. This result generalizes an analogous theorem known
for deterministic dynamical systems.
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stochastic differential equation, potential kernel, domination principle, Lyapunov function.
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1. INTRODUCTION

The notion of Lyapunov function is a fundamental tool in the second Lyapunov’s
method which consists of studying qualitative, asymptotic or long-term behavior of
orbits of dynamical systems. Moreover, a construction of such functions seems to be
an important (and difficult) problem for applications.

We propose in this paper a contribution to this aim in the framework of random
dynamical systems, inspired from probabilistic potential theory.
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A continuous random dynamical system (RDS) with state space F, is defined as a
pair (6, ) where 6 : R x Q — Q is a metric dynamical system (DS) on a probability
space (Q,F,P) and ¢ : R x Q x E — E is a continuous cocycle over 6. Standard
examples of RDS are solutions of random or stochastic differential equations (cf. [1]
and Appendices B and C for more details).

For a given RDS (0, ¢), we associate the potential kernel V' defined (as for the
deterministic case) by

/f@twgatw Jr)dt, weQzeEF,
0

for any positive measurable function f : Q x E — [0, 4+00]. According to the general
theory of semigroups of kernels, V is in fact the potential kernel of the measurable
semigroups (K;), where

th(CU,l') = f(otwv (p(t,LU)JJ)
In this paper, we prove essentially the ensuing result.
Theorem 1.1. The following assertions are equivalent:

1. The potential kernel V' of the RDS (0,¢) is proper, i.e. (w,x) — V f(w,z) is
x-continuous for each function f : Q x E — [0,00) which is bounded, z-continuous
and {f >0} C Q x K for some compact K C E.

2. (0,¢) has a global Lyapunov function L, i.e. L : Q@ x E — (0,00) is measurable,
x-continuous and L(0ww, p(t,w)x) L 0 ast T oo for allw € Q and x € E.

This equivalence establishes a connection between Lyapunov functions and a fun-
damental concept in the framework of probabilistic potential theory, namely the po-
tential kernel. In particular, we provide a constructive method for Lyapunov functions
and thus, we give an application of the so-called domination principle, another im-
portant notion in potential theory.

This theorem generalizes a result established by the first author for deterministic
dynamical systems (cf. Appendix A). Moreover, as for the deterministic case, this
characterization may be applied for systems theory or hybrid systems (cf. [4,5] for
more details).

For the proof, we use those of the deterministic result as some guideline for ours,
although many additional difficulties arise in the random case.

The paper is organized as follows: In the next section, we collect some useful
preliminaries, then we introduce the notion of the potential kernel associated with
a RDS. In Section 3, we present the proof of the main result cited above. Section 4
contains some applications in the framework of random differential equations and
stochastic differential equations. The last section contains some appendices about
the classical result which is generalized here (Appendix A), the notion of random
dynamical systems (Appendix B) and the standard examples of RDS (Appendix C).



On potential kernels associated with random dynamical systems 501

2. PRELIMINARIES

In this paper (Q, F,P) is a probability space. The notation a.e. (almost everywhere)
is understood with respect to P. R is the real line endowed with its o-algebra R.
Moreover, E is a locally compact Hausdorff space endowed with its borel o-algebra
£, d is a metric on E which generates £ and P(F) denotes the set of all subsets of E.
The product space €2 x F is always endowed with the usual product o-algebra F ® £.

IfACQOXE, let Alw):={z € E: (w,z)€ A} the w-section of A. Notice that A
is identified to the map A : Q — P(E), w — A(w). A random set is a measurable set
A € F®E& such that w — d(x, A(w)) is measurable for any z € E. A random set A is
said to be closed (resp. compact) if A(w) is a closed (resp. compact) subset of F for
every w € €.

If A is a random set of Q2 x E, the closure A of A is defined by the map
A:Q—PE),w— AWw).

Below, we present a basic result about random sets, namely the measurable selec-
tion theorem (cf. [6]).

Lemma 2.1. A set D C Q x E is a random closed set if and only if there exists a
sequence {v, : n € N} of measurable maps v, : Q@ — E such that

Up(w) € D(w) and D(w) = {v,(w):n €N}

for all w € Q. In particular, if D is a random closed set, there exists a measurable
selection, i.e., a measurable map v : Q — E such that v(w) € D(w) for all w € Q.

Next, denote by M(2 x E) the set of all functions f : Q x E' — [0, +00) which are
measurable. For f € M(Q2 x E), let S(f) := {f > 0} the random support of f. We
denote by C(Q2 x E) the set of all functions f € M(Q x E) which are z-continuous,
that is ¢ — f(w,z) is continuous for each w € Q. Moreover, let Cp(Q2 x E) be the
set of all z-continuous and x-bounded functions, i.e. for every w € {2, there exists
m(w) € (0,+00) such that |f(w,z)| < m(w) for all z € E. For f € Cp(2 x E) denote
by |[f(w, )l = sup,ep | f(w, z)|.

We denote by Cx (2 x E) the space of bounded functions f € C(Q2 x E) such that
S(f) € Qx K for some compact subset K of E. In particular, S(f) is random compact
and S(f)(w) C K for all w € €.

Throughout the paper, we use sometimes the notation (a®u)(w, z) := a(w) -u(x)
ifa:Q—=Randu: F—R.

Remark 2.2. For all definitions which depend on w € 2, we may replace the quan-
tifier “for all w € ©” by “for P-almost every (a.e.) w € Q.

Lemma 2.3. For each f € Co(Q2 X E), w = || f(w,-)|| is a random variable.
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Proof. Let f € Co(Qx E), S(f) its random support and S(f)(w) the w-section of S(f).
Then, for w € Q, we get

[ f(w,)|| = sup{|f(w,z)| : z € E}
— sup{l ()| ¢ € S(H)
= sup{|f(w,z)| : @ € {vp(w) : n € N}}
= sup{|f(w,2)| : € {vp(w) : n € N}}

The third equality is got by the selection theorem (i.e. lemma 2.1) while the fourth is
due to the continuity of x — f(w,z) for all w € . Hence w — || f(w,-)|| is a random
variable. O

3. POTENTIAL KERNELS ASSOCIATED WITH RDS

The definition and the elementary properties of random dynamical systems (RDS)
are given in Appendix B.

Definition 3.1. Let (0, ¢) be a continuous RDS. The associated Koopman family
(Kt)¢>0 is defined by

th(w,x) = f(etw7 w(ta UJ)I’) (31)
for fe MQ X E),weQandz € E.

Proposition 3.2. The family (K;) is a measurable semigroup of Markovian kernels
on Q x E. Moreover, (K;) is x-Fellerian, i.e.

}g% ||th(wa ) - f(wv )H =0, f € Ck(Q X E) (32)

Proof. Tt is obvious that each K is a Markovian kernel on (2 x E, F ® £). Moreover,
for each f € M(Q x E), the function (¢,w,x) — ¢@(f,w)x is measurable, then so is
(w,z) = K¢ f(w, ). On the other hand, by (B.3) and (B.5), we have K;f = fo®; and
therefore K1+ = K, o Ky. By continuity of the (¢,2) — ¢(t,w)x, it is straightforward
that Kif € Cp(Q2 x E) whenever f € Cp(Q2 x E).

Let f € Cx(Q2 x E), K be compact of E such that S(f) C Q x K and w € Q. For
a > 0, by the uniform continuity of (t,z) — f(6ww, ¢(t,w)z) on [0, 1] x K, there exists
a constant b € (0, 1) such that

Vs € [0,b], € K : |f(Osw,p(s,w)x) — f(w,z)| < a. (3.3)
It can be easily seen that (3.3) implies (3.2) by using standard arguments. O

Definition 3.3. Let (6, ¢) be a continuous RDS. The associated potential kernel is
defined by

Viw,z):= [ f(Oiw,p(t,w)z)dt (3.4)
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for f € M(Q x E),w € Q and = € E. The potential kernel V is said to be proper if
V(C(2 x E)) CC(2 x E).

Remark 3.4. The following notions are familiar in the framework of potential theory
defined by a measurable semigroup of sub-Markovian kernels. We refer the reader to
[12, IX,3]. According to the general theory, V' is in fact the potential kernel of the
measurable semigroup (K). Moreover, the cone of the (K;)-supermedian functions is
defined by

S((Ky)) i={u e M(Q x E): Ky < u,t > 0}. (3.5)

It is obvious that V(M (Q x E)) C S((K;)) and that S((K)) is stable by liminf.
It is also known that each (K})-supermedian function w is V-dominant (cf. [12,
T. 68]), that is, for all f € M(Q2 x E)

(Vf<u on {f>0}) = (Vf<u). (3.6)

In fact, the domination principle (3.6) is satisfied for general sub-Markovian resolvents
of kernels (Ry). In this paper, we are only concerned with the resolvent defined by
the measurable semigroup (K3), i.e.

Ry := / e UK, dt, 0>0. (3.7)
0

4. PROOF OF THE MAIN RESULT

For the proof of Theorem 1.1, we need some auxiliary results.
Let (6, ¢) be a continuous RDS and let V' be the associated potential kernel. An
immediate application of the domination principle, gives the following useful result.

Lemma 4.1. If V is proper, then V(C,(2 x E)) C Cp(Q x E).

Proof. Let f € Cx(2 x E) and K be a compact subset of E such that S(f) C Q x K.
For each w € Q, (t,2) — V f (6w, ¢(t,w)x) is continuous, then

sup V f(bww, p(t,w)z) := c(fiw) < 0. (4.1)
zeK
Since
c(w) = sup V f(w,z), (4.2)
zeK

then c is a random variable (cf. Lemma 2.3).
Moreover, by (B.1), (B.2), (3.4), (4.1) and (4.2) we get

c(fw) < c(w), t>0,w €. (4.3)
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In particular, the function (¢ ® 1) is (K})-supermedian. However, from (4.2) we have
0<Vf(w,z)<(c®1l)(w,z), (w,x)e{f>0}, (4.4)

and therefore by the domination principle (3.6), we get
0<Vf(w,z)<(e®1)(w,x), (waz)eNxE. (4.5)

Hence Vf € Co(Q x E). O

The following result is of the main importance in this paper since it contains
a construction of global Lyapunov functions.

Proposition 4.2. If V is proper, then there exists g € Cp(2 X E) such that g > 0,
VgeCy(Q2x E) and Vg > 0.

Proof. Since (E,£) is a locally compact Hausdorff space, there exists an exhaustion
(K,) of E by compact subsets, i.e. (i) Each K, is a compact subset of E, (ii) K, C
K, 4 for all n € N and (iii) E = | K,.

Consider now the function

d(.’E, E \ KﬂJrl)
z, B\ Kpt1) +d(z, K,,)’

up () = a ASNDR (4.6)

From (4.6) we see that u, is continuous and

1. up(x) =1if x € K,,
2. up(x)=0ifz € E\ Kp41,
3. 0<up(z) < lifa e Ky \ K.

In particular, for n € N, (1®u,,) € Cx(Q x E) and therefore V(1®u,) € Cp(2 x E) by
Lemma 4.1. Hence ¢, (w) := [|[V(1 ® up)(w,)|| < oo for all w € @ and n € N. Define

g(w,x) ::%m7 weQ ek (4.7

Obviously, g > 0 and g € C(Q x E). Since (1 @ u,) =1 on Q x K,,, we deduce from
(4.7) that Vg > 0 and [|[Vg(w,-)|| < 1 for each w € Q. Using again Lemma 4.1, we
conclude Vg is z-continuous as the limit of a normally convergent series of functions.

Finally, Vg € C,(Q x E). O
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The following notion is known even for RDS, cf. [2] for a more general definition.

Definition 4.3. A global Lyapunov function associated to (6,¢), is a mapping
L:Qx E — (0,400) which is x-continuous, strictly decreasing along all orbits of

(9, 80)7 Le.

L(biw, p(t,w)z) < L(w,z), t>0,2€ E,w e (4.8)
and
t_l}lin L(Ow, p(t,w)z) =0, x€ E,we. (4.9)

The following useful result is adapted from our paper [§].

Proposition 4.4. Let (0,¢) be a continuous RDS which admits a global Lyapunov
function. Then there exists a function L : Q x E — (0,+00) which is z-continuous
and satisfies

L(byw, p(t,w)x) = exp(—t) - L(w,z), teRweNzekFE. (4.10)

In particular, L is a global Lyapunov function.

Proof. Let L: Q x E — (0,00) be a global Lyapunov function of (,¢). For (w, ) €
Q x E, put

o0

L(w,z) == /exp(—r)i(@rw,go(r, w)x) dr. (4.11)

While L is measurable and z-continuous then so is L. On the other hand, by the
translation and the cocycle equations (B.1) and (B.2), it follows from (4.11) that

t

exp(—t)L(Oyw, p(t, w)z) = L(w,z) — /exp(—r)L(@rw, o(r,w)x) dr (4.12)
0

fort e R,we Qand z € E. Let
T(t,w, x) = exp(—t)L(Osw, o(t, w)z). (4.13)

From (4.12) we obtain first that ¢ — Y(¢,w,x) is strictly decreasing, second that
(r,x) = Y(r,w,z) is continuous and third

lim Y(t,w,z) =0, lim Y({,w,z)=+c0. (4.14)
t——+o0 t——o0
Therefore, for each (w,x) € Q x E, there exists by (4.13), a unique 7(w,x) € R such
that
YT(r(w,z),w,x) = 1. (4.15)

Let us now prove that = — 7(w,x) is continuous. It can be easily verified using
standard arguments. Indeed, let w € Q, € E and (z,) be a sequence of E which
tends to x.
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Suppose first that the sequence (7(w,x,)) is bounded. Let (y,) and (z,) be two
subsequences of (z,) such that (7(w,y,)) and (7(w, 2z,)) are convergent to s and ¢,
respectively. Applying (4.15) to (w,z), (w,x,) and (w, z,) we get

Y(r(w,z),w,z) = V(T(w,Yn),w, yn) = T(T(w, 2n),w, 2n). (4.16)

Letting n — oo in (4.16), we conclude by the continuity of (r,z) — Y(r,w,x) and by
injectivity of r — Y(r,w, z) that s =t = 7(w, x).

Otherwise, there exists in this case a subsequence (z,) of (z,) such that
(T(w, zn)) T 400 or such that (7(w, z,)) L —o0. If (7(w, 2,)) T 400, define

fn(y) =T(1(w, 2n),w,y), yEE,

then (f,,) is a decreasing sequence of functions which converges simply to 0 in view
of (4.14). Hence (f,) converges locally uniformly to 0. While (z,) belongs to a
compact neighborhood of x and lim f,(z) = 0 we get lim Y (7(w, zp,),w, z,) = 0.
But, from (4.14) we have lim Y (7(w, z5,),w, z,) = 1, which gives a contradiction. If
(1(w, 2n)) 4 —00, we consider

1
gn(y) == T , yeE

(W Zn), W, y)

instead of f, and, by the same arguments, we obtain again a contradiction. We con-
clude that 7 € C(Q2 x E). Finally, using again (B.1) and (B.2), it follows from (4.13)
and (4.14) that

T(Ow, p(t,w)z) = T(w,z) —t, teRweQ xeE.
Hence, by putting L := exp 7, we obtain the desired result. O

Now, we are able to establish the proof to the main result of the paper.

Proof of Theorem 1.1. Suppose first that V' is proper. Consider the function g defined
by Proposition 4.2 and put L := Vg. Then L > 0 and L € Cp(2 X E). Moreover, by
(3.4), (B.1), (B.2) and (4.7), we get

L(Oiw, o(t,w)z) = /g(@sw,go(s,w)x)ds < /g(Gsw,go(s,w)x)ds = L(w,x)
t 0

forallt > 0,w € Qand z € E. Hence L = Vg is a global Lyapunov function for (6, ¢).

Conversely, let L > 0 be a global Lyapunov function for (6, ¢). By Proposition 4.4,
we may assume that L satisfies (4.10). Now, let f € Ci(Q2 x E), K a compact subset
of E such that S(f) C Q x K and m a constant such that 0 < f < m. Define

a(fw) = inf{L(Ow, p(t,w)z) : z€ K}, t>0,we. (4.17)

For t = 0, we get
ofw) =inf{L(w,z):z € K}, we. (4.18)
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Using the same arguments as in the proof of Lemma 2.3 , we obtain that « is measur-
able. Moreover, o > 0 since L > 0, K is compact and L is z-continuous. By putting
B :=m/a, it can be easily verified that

flw,z) <p(w) - Llw,z), we,zeckE. (4.19)
On the other hand, according to (4.17), (4.18) and (4.11) we have
a(fw) < a(w), wet>0.
Thus, by Lemma B.3, we get
a(fw) = a(w), ae wet>0. (4.20)
Finally, from (4.19), (4.20) and (4.10) we deduce that
fOw, p(t,w)z) < exp(—t)B(w)L(w,z), ae weNt>0,z€kE. (4.21)

The finiteness and the continuity of
x— Vi(w,x): /f@twgptw )x)dt
0

can be easily deduced from (4.21) using standard arguments. O

5. SOME APPLICATIONS

Definition 5.1. A continuous RDS (0, ¢) is said to be gradient-like if there exist a
random set S C 2 X F and a homemorphism h : 2 x E — R x S such that:

1. for each (w,z) € Q x E, there exists t € R, (w,z) € S such that
(0:0, p(t,0)7) = (w, z), (5.1)
2. forallt e R,(w,Z) €9,
W0, p(t,0)T) = (¢, (@, T)). (5.2)

In [8], we have proved that (0,¢) is gradient-like if and only if (6, ) possesses
a global Lyapunov function. Using Theorem 1.1, we deduce immediately the following
corollary.

Corollary 5.2. (0,¢) is gradient-like if and only if the associated potential kernel is
proper.

Remark 5.3. Under some additional conditions on (2, F), any RDS (0, ¢) with state
space E decomposes F into a random recurrent chain part and a random gradient-like
part (cf. [11, Theorem 8|). Hence:
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1. our main result may be applied to the gradient-like part of a general RDS,
2. the potential kernel of (6, ¢) is proper if and only if (0, ¢) has no random recurrent
chains.

Next, we test our main result on some random and stochastic differential equations.
These classical concepts are introduced in Appendix C.

Example 5.4. Let (Q, F,P,6) be a metric DS. Consider the Lorentz system in E :=
R3\ {(0,0,0)} perturbed by real noises :

= o(6w)(v — u),
(RDE) < 0= p(biw)u — v — uw,
w=uv — f(Ow)w

such that o(w), p(w), B(w) > 0 and p(w) < o(w) < 1 for all w € Q. Let ¢ be an RDS
generated by (RDE) and let

L(w,z,y,2) =2 +9° + 22, weQ,(z,y,2) € E.
By the derivation of L with respect to t along orbits of ¢, we obtain
L=—(0—pu?—(2-p—0)v?—28uw? <0,
and therefore
L(Ow, o (w) (2,9, 2)) < L(w,z,y,2), weQt>0,(r,y,z2) € FE.

(cf. [1,11] for more details). We conclude that L is a global Lyapunov function for
(0, ), hence by Theorem 1.1, the associated potential kernel is proper.

Example 5.5. Consider the (RDS) defined on E := (—1,0) U (0,1) by

3
dX; = S X (X — XH2dt + (X; — X2)dW;, Xo=x€E (5.3)

and let ¢ be the associated cocycle over the Wiener DS 6. In fact, ¢ is explicitly given
(cf. [10, p. 123]) by

o(t,w)x = zexp(t + Wy (w)) - (1 — 22 + 22 exp(2t + 2W, (w))) /2. (5.4)

Moreover, by [11, pp. 288-289], (6, ¢) is gradient-like on E. We conclude by Corol-
lary 5.2 that the associated potential kernel is proper.

Remark 5.6. A random fixed point for the RDS (6,¢) is a random variable
X : Q — R such that

ot,w)X(w)=Xw), we,t>0. (5.5)

Consider f € Cr(Q2 x E) such that X(w) € S(f)(w),w € Q. By (3.4) and (5.5) we
deduce easily that V f(w, X(w)) = oo and therefore V f ¢ C(2 x E). Hence, if the
associated potential kernel is proper, the RDS does not have random fixed points.
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The following important example proves in particular, that V' may be not proper
even when (6, ) is without random fixed points.

Example 5.7. Let (2, F,P,0) be a metric DS and let £ : Q@ — [1,00) be a random
variable. Consider the linear (RDE) defined on E := R?\ {(0,0)} by

(W) = —&(Orw) X (w)dt,
dX?(w) = £(Oiw) X (w)dt,
X}(w) =2, XZ(w)=22 (2',2%)€E.

t
Using the notation 7¢(w) := [ £(#sw)ds, the associated cocycle is explicitly given by
0

p(tw)(a!,2?) = (2" exp(=r¢(w)), 2 exp(re(w))). (5.6)
For each X € E and r > 0, let
D(X,r):={Ze€FE:|Z-X|<r}
and denote the positive orbit from X by
Ou(X) = {p(t,w)(X) : £ > 0}.
Let A:=(1,0) and B := (0,1). Using (5.6), it can be verified that
O,(A) = (0,1] x {0}, O,(B)={0} x[1,00). (5.7)

For each n € N*, let A, (w) := (1, exp(—rn(w))). Then (A4, (w)) — A since (r,) T co.
Moreover, using (5.6), we get

B, (w) := p(n,w)A,(w) = (exp(—r,(w)),1) = B (5.8)

Now, let u : R x (0,00) — [0,00) be continuous, v = 1 on D(B,1/2) and v = 0 on
E\ D(B,3/4). Notice first that

VA0®u)(w,z)= /u(go(t,w)x)dt, wereE. (5.9)
0

Using again (5.9), the definition of B,, and the cocycle property (B.2), we deduce that

V(1 ®@u)(Opw, Bp(w)) = /u(gp(t,w)An)dt. (5.10)
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In particular, taking u := 1 ®v (i.e. u(z!,2?) := v(2?)) and using (5.6), (5.8), (5.10),
&> 1, we get

o

V(1 & u)(0pw, Bn(w)) = / u(exp(—rt(w), exp(rs(w) — rn(w))))dt

n

o] t

_ /v(exp (/g(as)ds))dt

n

o0 o0

Z/U(exp(/td.s))dt/v(exp(tn))dt.

n n
Hence, by putting ¢ := exp(¢t — n), we obtain

o0

V1 & u) (0w, Bu(w)) > /“Tf)de, nen. (5.11)

1

On the other hand, since D(B,3/4) N O,(A) = 0, we can see, by (5.9), that
V(1 ®u)(w,A) = 0. Moreover, (5.10) implies that

oo

0<V(1®u)(fpw,Br(w)) < /u(gp(t,w)An)dt =V(1®u)(w, A, (Ww)). (5.12)

Suppose now that X — V(1 ® u)(w, X) is continuous. Then we have

lim V(1 ®u)(w, Ap(w) =V(1@u)(w,A) =0

n—oo

which is in contradiction with (5.11) in view of (5.12). Hence, the potential kernel V/
is not proper.

Let X := (X!, X?):Q — F be a random fixed point of (0, ). By (5.5) and (5.6)
we have

(X (w) exp(—r¢(w)), X2 (w) exp(rs(w))) = (X1 (O;w), X2(0;w)) (5.13)

for t > 0 and w € Q. By letting t 1 oo in (5.13), we obtain X! = 0 and X2 = co and
therefore a contradiction since (X!, X?) € E.

We conclude for this example, that the generated RDS is without random fixed
points although the associated potential kernel is not proper.
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APPENDICES

A. A CLASSICAL RESULT

Let ¢ be a continuous deterministic dynamical system (DS) on a locally compact space
E, that is, ¢ : R x E — E, (t,x) — ¢(t,x) is continuous and satisfies the translation
equation, i.e.

¢(0,2) =z, ¢(s+t,z)=9¢(s,¢(t,x)), teRzek.
Standards examples are solutions of ordinary differential equations.

Following [9], the associated potential kernel U is defined for any positive measur-

able function v by
o0

Uv(z) := /v(gb(t,m)dt, reE.
0
It is proved in (]9, 9. Theoreme]) that the following statements are equivalent:

1. The potential kernel U of ¢ is proper, i.e. Uv is a finite continuous function when-
ever v is a continuous function with compact support,

2. ¢ possesses a global Lyapunov function, i.e. a continuous map [ : £ — (0, 00) such
that, for each z € E, [(¢(t,z)) L 0 as t T 0.

B. RANDOM DYNAMICAL SYSTEM

For the following definitions, we refer to [1, Chap. 1].

Definition B.1. A continuous random dynamical system (RDS) consists of two in-
gredients:
(1) A metric dynamical system (DS) 6 defined on (Q, F,P), i.e. a mapping

0:RxQ—Q, (tw)— Ow:=0(tw)
such that:
1. 0 satisfies the translation equation, i.e.
Op=1Iqg, Os1t=10500, steR, (B.1)

2. (t,w) — 0(t,w) is (R ® F, F)-measurable,
3. the probability P is @-inavariant, that is P(¢~1(F)) = P(F) for all F € F and
teR.

(2) A cocycle ¢ on E over the DS 0, i.e. a mapping
0:RxQXE—E, (twz)— p(tw,)
such that:

1. pis (R®F ® €&, E)-measurable,
2. (t,x) = ¢(t,w,x) is continuous for each w €
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3. the family ¢(t,w) := ¢(t,w,") : E — FE of random mappings, satisfies the cocycle
equation, i.e.
()O(O,W) = IE’a 90(5 + tvw) = 90(57 otw) © @(taw) (BQ)
for s,t € R,w € Q.

In this case, we say that ¢ is a continuous RDS driven by the DS 6, with state
space E and with time R. It is denoted by the pair (6, ©). Moreover, we may associate
to it the skew product

P RxQOXxE—-QxE, (tw,x)— P(w,x)
defined by
Oy (w, x) :i= (w, p(t,w,z)), teRweQxekE. (B.3)
Remark B.2.

(i) If © is reduced to one point, then the cocycle equation is reduced to the trans-
lation equation. Indeed, if © := {w} then 0,0 = w for all ¢t € R. Therefore, by
putting ¢; := ¢(t, @), the relation (B.2) becomes

Yo = Ig, Ps+t = Ps © Pt

which is the translation equation on E. Hence, RDS generalize in a natural way
the deterministic DS.
(i) It follows from (B.2) that (¢, w) is an homeomorphism on E and

ot,w) ™' =p(~t,0w), teRwe. (B.4)

(iii) Using (B.1) and (B.2), it can be easily seen that & satisfies the translation
equation on 2 X F, i.e.

(I)s+t = q)soq)t, s,tER (B5)
Thus, the skew product allows a natural generalization from the deterministic
case to the random case.
The following result is useful in this paper.

Lemma B.3. Let (Q,F,P,0) be a metric DS, a be a positive random variable and
t>0. If a(fiw) < a(w)a.e., then a(fw) = a(w)a.e.

Proof. Using the @-invariance of P and an approximation of a by step functions, we
obtain

/ (a(w) — a(fhw)) dP(w) = 0. (B.6)
Q

By the hypothesis on «, we can write P({c0f; < a}U{ao0f; = a}) = 1 and therefore
(B.6) reads

(a(w) — a(biw)) dP(w) = 0
{aob<a}
In other words, P(«wo 6, < o) = 0. O
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C. STANDARD EXAMPLES OF RDS

For the following examples of RDS, we refer to [1, Chap. 2|.

Example C.1. Random differential equations: Let 6 be a DS on (Q, F,P), let E
be an open subset of R? and h : Q x E — E be measurable such that, for each
w € Q, (t,z) = h(bww,x) is continuous and  — h(f;w, ) is locally-Lipschitz. Then
the random differential equation

dXi(w) = h(Oiw, Xt (w))dt, Xo(w)=z€FE

admits a unique solution ¢ which is a continuous RDS over . The solution ¢ is given
implicitly by

¢
x—i—/h@wgpswx)ds
0

In particular, t — (¢, w)z is absolutely continuous.

Example C.2. Stochastic differential equations: For this example, let us recall first
the Wiener DS on R?%. Let Q = {w : R — R? : w is continuous and w(0) = 0} equipped
with the compact open topology, let F := B(Q) the associated Borel o-algebra and for
t €R, let W; : Q — R w — w(t). There exists, by a classical result (the Kolmogorov
extension theorem), a unique probability measure P on (€, F) such that the processus
(W) ter is with stationary and independent increments and (W; — W) has the normal
distribution with mean 0 and variance |t — s|Ipe. For ¢t € R, define the Wiener shift
0; : Q — Q by
Orw(s) :=w(s+1t) —w(t).

It can be easily verified that (Q, F,P, 0) is a metric DS, called the Wiener or Brown-
ian DS.

The Wiener DS is the appropriate sample space in order to interpret an stochastic
differential equation (SDE) as an RDS. More precisely, consider the standard SDE

dX; = b(X,)dt + o(Xy)dW;, Xo(w)=zcR? tcR, (C.1)
where b: R? - R? and ¢ : R? - R? x R? are such that
[b(z) = b(y)| + |o(x) —o(y)| < Djz —y|, =,y €RY,

for some constant D > 0. Then (C.1) admits a unique solution
@ : R x QxR = R? which is a continuous RDS over the Wiener DS 6.
As for the RDE, ¢ is given implicitly by

t t

pltwe=a+ [botswlo)ds+ [ ololsw)) dW. )

0 0

The quantity “f(f o(p(s,w)x) dWs(w)” stands for the Itd stochastic integral (cf. [13]).
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