PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Augmented Reality and Indoor Positioning in Context of Smart Industry: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Presently, digitalization is causing continuous transformation of industrial processes. However, it does pose challenges like spatially contextualizing data from industrial processes. There are various methods for calculating and delivering real-time location data. Indoor positioning systems (IPS) are one such method, used to locate objects and people within buildings. They have the potential to improve digital industrial processes, but they are currently underutilized. In addition, augmented reality (AR) is a critical technology in today’s digital industrial transformation. This article aims to investigate the use of IPS and AR in manufacturing, the methodologies and technologies employed, the issues and limitations encountered, and identify future research opportunities. This study concludes that, while there have been many studies on IPS and navigation AR, there has been a dearth of research efforts in combining the two. Furthermore, because controlled environments may not expose users to the practical issues they may face, more research in a real-world manufacturing environment is required to produce more reliable and sustainable results.
Twórcy
  • Department of Computer and Geospatial Sciences, University of Gävle, Sweden
  • Department of Computer and Geospatial Sciences, University of Gävle, Sweden
  • Department of Computer and Geospatial Sciences, University of Gävle, Sweden
  • Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Sweden
Bibliografia
  • Abramovici M., Wolf M., Adwernat S. and Neges M. (2017), Context-aware Maintenance Support for Augmented Reality Assistance and Synchronous Multi-user Collaboration, Procedia CIRP, 59 (TES Conf 2016), pp. 18–22. DOI: 10.1016/j.procir.016. 09.042.
  • Arkan I. and Van Landeghem H. (2013), Evaluating the performance of a discrete manufacturing process using RFID: A case study, Robotics and ComputerIntegrated Manufacturing, No. 6, Vol. 29, pp. 502– 512. DOI: 10.1016/j.rcim.2013.06.003.
  • Arora B. and Parkar N. (2017), Augmented Reality: Tracking Methods, No. 01, Vol. 5, pp. 1–4
  • Awolusi A., Akinyokun O. and Iwasokun G. (2016), RFID and RTLS-Based Human Resource Monitoring System, British Journal of Mathematics & Computer Science, No. 4, Vol. 14, pp. 1–14. DOI: 10.9734/bjmcs/2016/23433.
  • Azuma, R.T. (1997), A survey of augmented reality. Presence: Teleoperators and Virtual Environments, No. 4, Vol. 6, pp. 355–385. DOI: 10.1162/pres.1997.6.4.355.
  • Baek F., Ha I. and Kim H. (2019), Augmented reality system for facility management using imagebased indoor localization, Automation in Construction, 99 (August 2018), pp. 18–26. DOI: 10.1016/j.autcon.2018.11.034.
  • Bai C., Dallasega P., Orzes G. and Sarkis J. (2020), Industry 4.0 technologies assessment: A sustainability perspective, International Journal of Production Economics, No. 229. DOI: 10.1016/j.ijpe.2020.107776.
  • Bimber O. and Raskar R. (2005), Spatial augmented reality: Merging real and virtual worlds, In Spatial Augmented Reality: Merging Real and Virtual Worlds. DOI: 10.1201/b10624.
  • Bosch T., Könemann R., De Cock H. and Van Rhijn G. (2017), The effects of projected versus display instructions on productivity, quality and workload in a simulated assembly task, ACM International Conference Proceeding Series, Part F128530, 412–415. DOI: 10.1145/3056540.3076189.
  • Bottani E. and Vignali G. (2019a), Augmented reality technology in the manufacturing industry: A review of the last decade, IISE Transactions, 51(3), pp. 284–310. DOI: 10.1080/24725854.2018.1493244.
  • Bottani E. and Vignali G. (2019b), Augmented reality technology in the manufacturing industry: A review of the last decade, IISE Transactions, No. 3, Vol. 51, pp. 284–310. DOI: 10.1080/24725854.2018.1493244.
  • Brewer A., Sloan N. and Landers T.L. (1999), Intelligent tracking in manufacturing, Journal of Intelligent Manufacturing, No. 3, Vol. 10, pp. 245–250. DOI: 10.1023/a:1008995707211.
  • Carrasco U., Urbina Coronado P.D., Parto, M. and Kurfess, T. (2018a), Indoor location service in support of a smart manufacturing facility, Computers in Industry, No. 103, pp. 132–140. DOI: 10.1016/j.compind. 2018.09.009.
  • Carrasco U., Urbina Coronado P.D., Parto M. and Kurfess, T. (2018b), Indoor location service in support of a smart manufacturing facility, Computers in Industry, No. 103, pp. 132–140. DOI: 10.1016/j.compind. 2018.09.009.
  • Chalhoub J. and Ayer S.K. (2018), Using Mixed Reality for electrical construction design communication, Automation in Construction, No. 86, (November 2017), pp. 1–10. DOI: 10.1016/j.autcon.2017.10.028.
  • Chatzopoulos Di., Bermejo C., Huang Z. and Hui P. (2017), Mobile Augmented Reality Survey: From Where We Are to Where We Go, IEEE Access, No. 5, pp. 6917–6950. DOI: 10.1109/ACCESS.2017.2698164.
  • Chen C.J., Hong J. and Wang S.F. (2015), Automated positioning of 3D virtual scene in AR-based assembly and disassembly guiding system, International Journal of Advanced Manufacturing Technology, No. 5-8, Vol. 76, pp. 753–764. DOI: 10.1007/s00170-014-6321-6.
  • Chen S., Hsu C. and Li I. (2018), Bluetooth Smart : Design and Implementation of Positioning Mechanism and System with Low Energy, June, pp. 1–13. DOI: 10.20944/preprints201806.0009.v1.
  • Codina M., Castells-Rufas D., Carrabina J., Salmon I., Ayuso N., Guerendiain A. and Alvarez G. (2019), Augmented Reality for Emergency Situations in Buildings with the Support of Indoor Localization, Proceedings, No. 1, Vol. 31. DOI: 10.3390/proceedings2019031076.
  • Damiani L., Demartini M., Guizzi G., Revetria R. and Tonelli F. (2018), Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era, IFACPapersOnLine, No. 11, Vol. 51, pp. 624–630. DOI: 10.1016/j.ifacol.2018.08.388.
  • Danielsson O., Syberfeldt A., Holm M. and Wang L. (2018), Operators perspective on augmented reality as a support tool in engine assembly, Procedia CIRP, Vol. 72, pp. 45–50. DOI: 10.1016/j.procir.2018.03.153.
  • Davies R. (2015), Industry 4.0. Digitalisation for productivity and growth, European Parliamentary Research Service, September, 10.
  • de Souza Cardoso L.F., Mariano F.C.M.Q. and Zorzal E.R. (2020a), A survey of industrial augmented reality. Computers and Industrial Engineering, Vol. 139 (April 2019), DOI: 10.1016/j.cie.2019.106159.
  • de Souza Cardoso L.F., Mariano F.C.M.Q. and Zorzal E.R. (2020b), Mobile augmented reality to support fuselage assembly, Computers and Industrial Engineering, Vol. 148 (February), DOI: 10.1016/j.cie.2020.106712.
  • Doolani S., Wessels C., Kanal V., Sevastopoulos C., Jaiswal A., Nambiappan H. and Makedon F. (2020), A Review of Extended Reality (XR) Technologies for Manufacturing Training, Technologies, No. 4, Vol. 8. DOI: 10.3390/technologies8040077.
  • dos Santos A.C.C., Delamaro M.E. and Nunes F.L.S. (2013), The relationship between requirements engineering and virtual reality systems: A systematic literature review, Proceedings – 2013 15th, Symposium on Virtual and Augmented Reality, SVR 2013, pp. 53–62. DOI: 10.1109/SVR.2013.52.
  • Dosaya V., Varshney S., Parameshwarappa V.K., Beniwal A. and Tak S. (2020), A Low cost Augmented Reality system for Wide Area Indoor Navigation. 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, pp. 190–195. DOI: 10.1109/DASA51403.2020.9317014.
  • Du P., Zhang S., Zhong W.-D., Chen C., Yang H., Alphones A. and Zhang R. (2019), Real-time indoor positioning system for a smart workshop using white LEDs and a phase-difference-of-arrival approach, Optical Engineering, No. 8, Vol. 58, 1. DOI: 10.1117/1.oe.58.8.084112.
  • Egger J. and Masood T. (2020), Augmented reality in support of intelligent manufacturing – A systematic literature review, Computers and Industrial Engineering, Vol. 140 (May 2019), 106195. DOI: 10.1016/j.cie.2019.106195.
  • Elsharkawy A., Naheem K., Koo D. and Kim M.S. (2021), A uwb-driven self-actuated projector platform for interactive augmented reality applications, Applied Sciences (Switzerland), No. 6, Vol. 11. DOI: 10.3390/app11062871.
  • Ezell S. (2018), Why Manufacturing Digitalization Matters and How Countries Are Supporting It, Information Technology & Innovation Foundation, No. 1 (April), pp. 1–66.
  • Fernández del Amo I., Erkoyuncu J.A., Roy R., Palmarini R. and Onoufriou D. (2018), A systematic review of Augmented Reality content-related techniques for knowledge transfer in maintenance applications, Computers in Industry, No. 103, pp. 47–71. DOI: 10.1016/j.compind.2018.08.007.
  • Fiorentino M., Uva A.E., Gattullo M., Debernardis S. and Monno G. (2014), Augmented reality on large screen for interactive maintenance instructions, Computers in Industry, No. 2, Vol. 65, pp. 270–278. DOI: 10.1016/j.compind.2013.11.004.
  • Flatt H., Koch N., Röcker C., Günter A. and Jasperneite J. (2015), A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization, IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2015-Octob, pp. 0– 3. DOI: 10.1109/ETFA.2015.7301586.
  • Florescu A. and Barabas S.A. (2020), Modeling and simulation of a flexible manufacturing system – a basic component of industry 4.0, Applied Sciences (Switzerland), No. 22, Vol. 10, pp. 1–20. DOI: 10.3390/app10228300.
  • Fraga-Lamas P., Fernández-Caramés T.M., Blanco-Novoa Ó. and Vilar-Montesinos M.A. (2018), A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard, IEEE Access, No. 6, pp. 13358–13375. DOI: 10.1109/ACCESS.2018.2808326.
  • Furht B. (Ed.), (2006), Augmented Reality, Encyclopedia of Multimedia Springer US, pp. 29–31. DOI: 10.1007/0-387-30038-4_10.
  • Gattullo M., Evangelista A., Uva A.E., Fiorentino M. and Gabbard J. (2020), What, How, and Why are Visual Assets used in Industrial Augmented Reality? A Systematic Review and Classification in Maintenance, Assembly, and Training (from 1997 to 2019), IEEE Transactions on Visualization and Computer Graphics, No. 2626(c), pp. 1–15. DOI: 10.1109/TVCG.2020.3014614.
  • Gavish N., Gutiérrez T., Webel S., Rodríguez J., Peveri, M., Bockholt U. and Tecchia F. (2015), Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks, Interactive Learning Environments, No. 6, Vol. 23, pp. 778–798. DOI: 10.1080/10494820.2013.815221.
  • Ghadge K., Achar T., Bhatt A., Gurumoorthy B. and Chakrabarti A. (2020), Indoor positioning of metal parts by fingerprinting using passive RFID, Procedia CIRP, No. 88(i), pp. 60–63. DOI: 10.1016/j.procir.2020.05.011.
  • Ghobakhloo M. and Iranmanesh M. (2021), Digital transformation success under Industry 4.0: a strategic guideline for manufacturing SMEs, Journal of Manufacturing Technology Management, No. 8, Vol. 32, pp. 1533–1556. DOI: 10.1108/JMTM-11-2020-0455.
  • Ginters E. and Martin-Gutierrez J. (2013), Low cost augmented reality and RFID application for logistics items visualization, Procedia Computer Science, No. 26 (October 2015), pp. 3–13. DOI: 10.1016/j.procs.2013.12.002.
  • Guo Z.X., Ngai E.W.T., Yang C. and Liang X. (2015), An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment, International Journal of Production Economics, No. 159, pp. 16–28. DOI: 10.1016/j.ijpe.2014.09.004.
  • Hahn J., Ludwig B., and Wolff C. (2015). Augmented reality-based training of the PCB assembly process. ACM International Conference Proceeding Series, 30-November-2015, 395–399. DOI: 10.1145/2836041.2841215.
  • Henderson S. and Feiner S. (2011), Exploring the benefits of augmented reality documentation for maintenance and repair, IEEE Transactions on Visualization and Computer Graphics, No. 10, Vol. 17, pp. 1355–1368. DOI: 10.1109/TVCG.2010.245.
  • Hořejší P. (2015), Augmented reality system for virtual training of parts assembly, Procedia Engineering, No. 100 (January), pp. 699–706. DOI: 10.1016/j.proeng.2015.01.422.
  • Hou L. and Wang X. (2013), A study on the benefits of augmented reality in retaining working memory in assembly tasks: A focus on differences in gender, Automation in Construction, No. 32, pp. 38–45. DOI: 10.1016/j.autcon.2012.12.007.
  • Huang S., Guo Y., Zha S., Wang F. and Fang W. (2017), A Real-time Location System Based on RFID and UWB for Digital Manufacturing Workshop, Procedia CIRP, No. 3, pp. 132–137. DOI: 10.1016/j.procir.2017.03.085.
  • Jetter J., Eimecke J. and Rese A. (2018), Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? Computers in Human Behavior, No. 87 (May), pp. 18–33. DOI: 10.1016/j.chb.2018.04.054.
  • Kim J., Lorenz M., Knopp S. and Klimant P. (2020), Industrial Augmented Reality: Concepts and User Interface Designs for Augmented Reality Maintenance Worker Support Systems, Adjunct Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020, pp. 67–69. DOI: 10.1109/ISMAR-Adjunct51615.2020.00032.
  • Koch C., Neges M., König M. and Abramovici M. (2014), Natural markers for augmented reality-based indoor navigation and facility maintenance, Automation in Construction, No. 48 (December 2017), pp. 18–30. DOI: 10.1016/j.autcon.2014.08.009.
  • Kollatsch C., Schumann M., Klimant P., Wittstock V. and Putz M. (2014), Mobile augmented reality based monitoring of assembly lines, Procedia CIRP, No. 23 (C), pp. 246–251. DOI: 10.1016/j.procir.2014. 10.100.
  • Kruijff E., Swan J.E. and Feiner S. (2010), Perceptual issues in augmented reality revisited, 9th IEEE International Symposium on Mixed and Augmented Reality 2010: Science and Technology, ISMAR 2010 – Proceedings, pp. 3–12. DOI: 10.1109/ISMAR.2010.5643530.
  • Kumar S.G., Prince S. and Shankar B.M. (2021), Smart tracking and monitoring in supply chain systems using RFID and BLE, 3rd International Conference on Signal Processing and Communication, ICPSC 2021, May, pp. 757–760. DOI: 10.1109/ICSPC51351.2021.9451700.
  • Kuo C., Jeng, T. And Yang, I. (2013), An invisible head marker tracking system for indoor mobile augmented reality, Automation in Construction, No. 33, pp. 104– 115. DOI: 10.1016/j.autcon.2012.09.011.
  • Lamberti F., Manuri F., Sanna A., Paravati G., Pezzolla, P. and Montuschi P. (2014), Challenges, opportunities, and future trends of emerging techniques for augmented reality-based maintenance, IEEE Transactions on Emerging Topics in Computing, No. 4, Vol. 2, pp. 411–421. DOI: 10.1109/TETC.2014.2368833.
  • Lee S.G., Ma Y.S., Thimm G.L. and Verstraeten J. (2008), Product lifecycle management in aviation maintenance, repair and overhaul, Computers in Industry, No. 2–3, Vol. 59, pp. 296–303. DOI: 10.1016/j.compind.2007.06.022.
  • Lee Y.K., Lee S.J. and Yoon D. (2021), Evaluation of UWB-Based Indoor Positioning in Smart Factory Environment. Smart Innovation, Systems and Technologies, No. 212, pp. 387–392. DOI: 10.1007/978-981-33-6757-9_48.
  • Liu H. and Wang L. (2017), An AR-based Worker Support System for Human-Robot Collaboration, Procedia Manufacturing, No. 11 (June), pp. 22–30. DOI: 10.1016/j.promfg.2017.07.124.
  • Lu S., Xu C., Zhong R.Y. and Wang L. (2017), A RFIDenabled positioning system in automated guided vehicle for smart factories, Journal of Manufacturing Systems, No. 44, pp. 179–190. DOI: 10.1016/j.jmsy.2017.03.009.
  • Maly I., Sedlacek D. and Leitao P. (2016), Augmented reality experiments with industrial robot in industry 4.0 environment, IEEE International Conference on Industrial Informatics (INDIN), pp. 176–181. DOI: 10.1109/INDIN.2016.7819154.
  • Martinetti A., Rajabalinejad M. and Van Dongen L. (2017), Shaping the Future Maintenance Operations: Reflections on the Adoptions of Augmented Reality Through Problems and Opportunities, Procedia CIRP, 59 (TESConf 2016 ), pp. 14–17. DOI: 10.1016/j.procir.2016.10.130.
  • Martínez H. and Laukkanen S. (2015), Towards an augmented reality guiding system for assisted indoor remote vehicle navigation, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, No. 2, Vol. 2. DOI: 10.4108/inis.2.2.e3.
  • Masood T. and Egger J. (2019a), Augmented reality in support of Industry 4.0 – Implementation challenges and success factors, Robotics and Computer-Integrated Manufacturing, No. 58 (February), pp. 181–195. DOI: 10.1016/j.rcim.2019.02.003.
  • Masood T. and Egger J. (2019b), Augmented reality in support of Industry 4.0 – Implementation challenges and success factors, Robotics and Computer-Integrated Manufacturing, No. 58 (February), pp. 181–195. DOI: 10.1016/j.rcim.2019.02.003.
  • Masood T. and Egger J. (2019c), Augmented reality in support of Industry 4.0 – Implementation challenges and success factors, Robotics and Computer-Integrated Manufacturing, No. 58 (April 2020), pp. 181–195. DOI: 10.1016/j.rcim.2019.02.003.
  • Masood T. and Egger J. (2019d), Augmented reality in support of Industry 4.0 – Implementation challenges and success factors, Robotics and ComputerIntegrated Manufacturing, No. 58, pp. 181–195. DOI: 10.1016/j.rcim.2019.02.003.
  • Mengoni M., Ceccacci S., Generosi A. and Leopardi A. (2018), Spatial Augmented Reality: An application for human work in smart manufacturing environment, Procedia Manufacturing, No. 17, pp. 476–483. DOI: 10.1016/j.promfg.2018.10.072.
  • Mircheski I. and Rizov T. (2018), Nondestructive Disassembly Process of Technical Device, Acta Technica Corviniensis – Bulletin of Engineering, pp. 39–44.
  • Moher D., Liberati A., Tetzlaff J., Altman D.G., Altman D., Antes G., Atkins D., Barbour V., Barrowman N., Berlin J.A., Clark J., Clarke M., Cook D., D’Amico R., Deeks J.J., Devereaux P.J., Dickersin K., Egger M., Ernst E. and Tugwell P. (2009), Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, PLoS Medicine, No. 7, Vol. 6. DOI: 10.1371/journal.pmed.1000097.
  • Morar A., Moldoveanu A., Mocanu I., Moldoveanu F., Radoi I.E., Asavei V., Gradinaru A. and Butean A. (2020), A comprehensive survey of indoor localization methods based on computer vision, Sensors (Switzerland), No. 9, Vol. 20, pp. 1–36. DOI: 10.3390/s20092641.
  • Mourtzis D., Angelopoulos J. and Panopoulos N. (2020), Intelligent Predictive Maintenance and Remote Monitoring Framework for Industrial Equipment Based on Mixed Reality, Frontiers in Mechanical Engineering, No. 6 (December), pp. 1–12. DOI: 10.3389/fmech.2020.578379.
  • Mourtzis D., Zogopoulos V. and Vlachou E. (2017), Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry, Procedia CIRP, No. 63, pp. 46–51. DOI: 10.1016/j.procir.2017.03.154.
  • Nee A.Y.C. and Ong S.K. (2013), Virtual and augmented reality applications in manufacturing, In IFAC Proceedings Volumes (IFAC-PapersOnline), Issue 9, Vol. 46. DOI: 10.3182/20130619-3-RU-3018.00637.
  • Park J.S., Lee S.J., Jimenez J., Kim S.K. and Kim J.W. (2020), Indoor positioning-based mobile resource movement data management system for smart factory operations management, International Journal of Distributed Sensor Networks, No. 3, Vol. 16. DOI: 10.1177/1550147720909760.
  • Park M.K., Lim K.J., Seo M.K., Jung S.J. and Lee K.H. (2015), Spatial augmented reality for product appearance design evaluation, Journal of Computational Design and Engineering, No. 1, Vol. 2, pp. 38–46. DOI: 10.1016/j.jcde.2014.11.004.
  • Polvi J., Taketomi T., Yamamoto G., Dey A., Sandor C. and Kato H. (2016a), SlidAR: A 3D positioning method for SLAM-based handheld augmented reality, Computers and Graphics (Pergamon), No. 55, pp. 33–43. DOI: 10.1016/j.cag.2015.10.013.
  • Polvi J., Taketomi T., Yamamoto G., Dey A., Sandor C. and Kato H. (2016b), SlidAR: A 3D positioning method for SLAM-based handheld augmented reality, Computers and Graphics (Pergamon), No. 55, pp. 33–43. DOI: 10.1016/j.cag.2015.10.013.
  • Quandt M., Knoke B., Gorldt C., Freitag M. and Thoben K.D. (2018), General Requirements for Industrial Augmented Reality Applications, Procedia CIRP, No. 72, pp. 1130–1135. DOI: 10.1016/j.procir.2018. 03.061.
  • Rabbi I. and Ullah S. (2013), A Survey on Augmented Reality Challenges and Tracking. Acta Graphica: Znanstveni Časopis Za Tiskarstvo i Grafičke Komunikacije, No. 1–2, Vol. 24, pp. 29–46.
  • Rácz-Szabó A., Ruppert T., Bántay L., Löcklin A., Jakab L. and Abonyi J. (2020), Real-time locating system in production management, Sensors (Switzerland), No. 23, Vol. 20, pp. 1–22. DOI: 10.3390/s2023 6766.
  • Rátosi M. and Simon G. (2018), Real-Time Localization and Tracking Using Visible Light Communication, IPIN 2018 – 9th International Conference on Indoor Positioning and Indoor Navigation. DOI: 10.1109/IPIN.2018.8533800.
  • Rokhsaritalemi S., Sadeghi-Niaraki A. and Choi S.M. (2020), A review on mixed reality: Current trends, challenges and prospects, Applied Sciences (Switzerland), No. 2, Vol. 10. DOI: 10.3390/app10020636.
  • Samir K., Maffei A. and Onori M.A. (2019), Real-Time asset tracking; a starting point for digital twin implementation in manufacturing, Procedia CIRP, No. 81, pp. 719–723. DOI: 10.1016/j.procir.2019.03.182.
  • Sanna A., Manuri F., Lamberti F., Paravati G. and Pezzolla P. (2015), Using handheld devices to sup port augmented reality-based maintenance and assembly tasks, 2015 IEEE International Conference on Consumer Electronics, ICCE 2015, pp. 178–179. DOI: 10.1109/ICCE.2015.7066370.
  • Shi Z., Xie Y., Xue W., Chen Y., Fu L. and Xu X. (2020), Smart factory in Industry 4.0, Systems Research and Behavioral Science, No. 4, Vol. 37, pp. 607–617. DOI: 10.1002/sres.2704.
  • Siegele D., di Staso U., Piovano M., Marcher C. and Matt D. T. (2020), State of the Art of Non-visionBased Localization Technologies for AR in Facility Management, pp. 255–272. DOI: 10.1007/978-3-030-58465-8_20.
  • Syberfeldt A., Ayani M., Holm M., Wang L. and Lindgren-Brewster R. (2016a), Localizing operators in the smart factory: A review of existing techniques and systems. International Symposium on Flexible Automation, ISFA 2016, pp. 179–185. DOI: 10.1109/ISFA.2016.7790157.
  • Syberfeldt A., Ayani M., Holm M., Wang L. and Lindgren-Brewster R. (2016b), Localizing operators in the smart factory: A review of existing techniques and systems, International Symposium on Flexible Automation, ISFA 2016, pp. 179–185. DOI: 10.1109/ISFA.2016.7790157.
  • Syberfeldt A., Danielsson O. and Gustavsson P. (2017a), Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products, IEEE Access, No. 5, pp. 9118–9130. DOI: 10.1109/ACCESS.2017.2703952.
  • Syberfeldt A., Danielsson O. and Gustavsson P. (2017b), Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products, IEEE Access, No. 5, pp. 9118–9130. DOI: 10.1109/ACCESS.2017.2703952.
  • Urbas U., Vrabič R. and Vukašinović N. (2019), Displaying product manufacturing information in augmented reality for inspection, Procedia CIRP, No. 81, pp. 832–837. DOI: 10.1016/j.procir.2019.03.208.
  • Uva A.E., Gattullo M., Manghisi V.M., Spagnulo D., Cascella G.L. and Fiorentino M. (2018a), Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations, International Journal of Advanced Manufacturing Technology, No. 1-4, Vol. 94, pp. 509–521. DOI: 10.1007/s00170-017-0846-4.
  • Uva A.E., Gattullo M., Manghisi V.M., Spagnulo D., Cascella G.L. and Fiorentino M. (2018b), Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations, International Journal of Advanced Manufacturing Technology, No. 1-4, Vol. 94, pp. 509–521. DOI: 10.1007/s00170-017-0846-4.
  • Van Krevelen D.W.F. and Poelman R. (2010), A Survey of Augmented Reality Technologies, Applications and Limitations, International Journal of Virtual Reality, No. 2, Vol. 9, pp. 1–20. DOI: 10.20870/ijvr. 2010.9.2.2767.
  • Wang X., Ong S.K. and Nee A.Y.C. (2016a), A comprehensive survey of augmented reality assembly research, Advances in Manufacturing, No. 1, Vol. 4, pp. 1–22. DOI: 10.1007/s40436-015-0131-4.
  • Wang X., Ong S.K. and Nee A.Y.C. (2016b), A comprehensive survey of augmented reality assembly research, Advances in Manufacturing, No. 1 Vol. 4, pp. 1–22. DOI: 10.1007/s40436-015-0131-4.
  • Zhang J., Ong S.K. and Nee A.Y.C. (2011), RFIDassisted assembly guidance system in an augmented reality environment, International Journal of Production Research, No. 13, Vol. 49, pp. 3919–3938. DOI: 10.1080/00207543.2010.492802.
  • Zhou F., Lin X., Liu C., Zhao Y., Xu P., Ren L., Xue T. and Ren L. (2019), A survey of visualization for smart manufacturing, Journal of Visualization, No. 2, Vol. 22, pp. 419–435. DOI: 10.1007/s12650- 018-0530-2.
  • Zhou J. (2013), Digitalization and intelligentization of manufacturing industry, Advances in Manufacturing, No. 1, Vol. 1, pp. 1–7. DOI: 10.1007/s40436-013-0006-5.
  • Židek K., Pitel’ J., Adámek M., Lazorík P. and Hošovský A. (2020), Digital twin of experimental smart manufacturing assembly system for industry 4.0 concept, Sustainability (Switzerland), No. 9, Vol. 12, pp. 1–16. DOI: 10.3390/su12093658.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-093abe56-91cd-441d-a768-980997693498
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.