PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal resistance and uptake by Trichosporon asahii and Pichia kudriavzevii isolated from industrial effluents

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal-resistant yeast strains, Trichosporon asahii and Pichia kudriavzevii, were grown-well onto YPD medium at 37°C (pH 6) and 30°C (pH 7), respectively. Tolerance values determined in T. asahii were 35 mM (Pb), 33 mM (Cu), 30 mM (As) and 10 mM (Cd) while P. kudriavzevii resisted up to 31 mM (Pb), 27 mM (Cu), 15 mM (Cd) and 12 mM (As). Yeasts grown in Minimal Salt Medium (MSM) were treated separately with metal challenge (100 mg/L) for 2 days. T. asahii showed elevated glutathione (GSH) level with Cd (83.06), As (81.87), Pb (66.88) and Cu (56.19) mM/g which was 70 (Cu), 69.87 (Pb), 56.47 (As) and 52.76 (Cd) in P. kudriavzevii as compared to the control. The glutathione (GSH): glutathione disulfi de (GSSG) ratio was decreased with all treated heavy-metals except Cd in T. asahii and increased with Cu and Pb in P. kudriavzevii. T. asahii could remove 78% (Cd), 72% (As), 85% (Cu) and 94.5% (Pb) from the medium after 12 days while was able to uptake 44.8, 41, 62 and 72 mg/g Cd, As, Cu and Pb, respectively. Likewise, P. kudriavzevii was able to remove 61% (Cd), 62% (As), 61% (Cu) and 87% (Pb) after 12 days of incubation and also showed capacity to uptake 36.8, 48, 40 and 57 mg/g Cd, As, Cu and Pb, respectively. Total protein profi ling of yeasts revealed marked differences in banding pattern due to increased oxidation under metal stressed conditions. High metal uptake ability makes T. asahii and P. kudriavzevii potential candidates to remove metals from the environment.
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • University of the Punjab, Pakistan, Department of Microbiology and Molecular Genetics
autor
  • University of the Punjab, Pakistan, Department of Microbiology and Molecular Genetics
Bibliografia
  • 1. Anderson, M.E. (1985). Determination of glutathione and glutathione disulfide in biological samples, Methods in Enzymology, 113, pp. 548-555.
  • 2. Bradford, M.M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 7, pp. 248-254.
  • 3. Celebi, N., Nadaroglu, H., Kalkan, E. & Kotan, R. (2016). Removal of copper from copper-contaminated river water and aqueous solutions using Methylobacterium extorquens modified Erzurum clayey soil, Archives of Environmental Protection, 42, pp. 58-69.
  • 4. Cotgreave, I.A. & Gerdes, R.G. (1998). Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?, Biochemical and Biophysical Research Communications, 242, pp. 1-9.
  • 5. Dickinson, D.A. & Forman, H.J. (2002). Glutathione in defense and signaling, Annals of the New York Academy of Sciences, 973, pp. 488-504.
  • 6. Durve, A., Naphade, S., Bhot, M., Varghese, J. & Chandra, N. (2013). Plasmid curing and protein profiling of heavy metal tolerating bacterial isolates, Archives of Applied Science Research, 5, pp. 46-54.
  • 7. Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.-H., Indraswati, N. & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, Journal of Hazardous Materials,162, pp. 616-645.
  • 8. Freeman, M.L., Huntley, S.A., Meredith, M.J., Senister, G.A. & Lepock, J. (1997). Destabilization and denaturation of cellular protein by glutathione depletion, Cell Stress and Chaperones, 2, pp. 191-198.
  • 9. Grant, C.M. (2001). Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions, Molecular Microbiology, 39, pp. 533-541.
  • 10. He, M., Li, X., Liu, H., Miller, S.J., Wang, G. & Rensing, C. (2011). Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1, Journal of Hazardous Materials, 185, pp. 682-688.
  • 11. Huang, F., Guo, C.-L., Lu, G.-N., Yi, X.-Y., Zhu, L.-D. & Dang, Z. (2014). Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism, Chemosphere, 109, pp. 134-142.
  • 12. Ilyas, S. & Rehman, A. (2015). Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis, Environmental Monitoring and Assessment, 187(1), pp. 1-7.
  • 13. Ilyas, S., Rehman, A., Varela, A.C. & Sheehan, D. (2014). Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: Identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate, PloS One, 9(7), e102340.
  • 14. Khan, Z., Hussain, S.Z., Rehman, A., Zulfiqar, S. & Shakoori, A.R. (2015a). Evaluation of cadmium resistant bacterium, Klebsiella pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium, Pakistan Journal of Zoology, 47, pp. 1533-1543.
  • 15. Khan, Z., Nisar, M.A., Hussain, S.Z., Arshad, M.N. & Rehman, A. (2015b). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium, Applied Microbiology and Biotechnology, 99, pp. 10745-10757.
  • 16. Khan, Z., Rehman, A. & Hussain, S.Z. (2016). Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater, Chemosphere, 159, pp. 32-43.
  • 17. Kim, H.S., Kwack, S.J. & Lee, B.M. (2005). Alteration of cytochrome P-450 and glutathione S-transferase activity in normal and malignant human stomach, Journal of Toxicology and Environmental Health, 68, pp. 1611-1620.
  • 18. Klatt, P. & Lamas, S. (2000). Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress, European Journal of Biochemistry, 267, pp. 4928-4944.
  • 19. Laemmli, U.K. (1970). Cleavage of structural proteins during assembly of the head of the bacteriophage T4, Nature, 227, pp. 680-685.
  • 20. Larena, I., Salazar, O., Goncalez, V., Julian, M.C. & Rubio, V. (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes, Journal of Bacteriology, 75, pp. 187.
  • 21. Mazzola, D., Pimentel, C., Caetano, S., Amaral, C., Menezes, R., Santos, C.N., Eleutherio, E. & Rodrigues-Pousada, C. (2015). Inhibition of Yap2 activity by MAPKAP kinase Rck1 affects yeast tolerance to cadmium, FEBS letters, 589, pp. 2841-2849.
  • 22. Menezes, R.A., Amaral, C., Batista-Nascimento, L., Santos, C., Ferreira, R.B., Devaux, F., Eleutherio, E.C. & Rodrigues-Pousada, C. (2008). Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress, Biochemistry Journal, 414, pp. 301-311.
  • 23. Mielniczki-Pereira, A.A., Schuch, A.Z., Bonatto, D., Cavalcante, C.F., Vaitsman, D.S., Riger, C.J., Eleutherio, E.C.A. & Henriques, J.A.P. (2008). The role of the yeast ATP-binding cassette Ycf1p in glutathione and cadmium ion homeostasis during respiratory metabolism, Toxicology Letter, 180, pp. 21-27.
  • 24. Peña-Llopis, S., Ferrando, M.D. & Pe'na, J.B. (2002). Impaired glutathione redox status is associated with decreased survival in two organophosphate poisoned marine bivalves, Chemosphere, 47, pp. 485-497.
  • 25. Penninckx, M.J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Research, 2(3), pp. 295-305.
  • 26. Shakya, M., Sharma, P., Meryem, S.S., Mahmood, Q. & Kumar, A. (2015). Heavy metal removal from industrial wastewater using fungi: Uptake mechanism and biochemical aspects, Journal of Environmental Engineering, C6015001.
  • 27. Uzun, Y. & Sahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent, Archives of Environmental Protection, 43, pp. 37-43.
  • 28. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease, International Journal of Biochemistry and Cellular Biology, 39, pp. 44-84.
  • 29. Vargas-García, M.dC., López, M.J., Suárez-Estrella, F. & Moreno, J. (2012). Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection, The Science of Total Environment, 431, pp. 62-67.
  • 30. Yang, T., Chen, M.-L. & Wang, J.-H. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance, Trends in Analytical Chemistry, 66, pp. 90-102.
  • 31. Yan, G. & Viraraghavan, T. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Research, 37(18), pp. 4486-4496.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09396908-8367-4339-9b0a-0abf11f419fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.