PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd domieszek do żywicy fenolowej pod względem użycia ablacyjnego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Review of additives for phenolic resin in terms of ablative use
Języki publikacji
PL EN
Abstrakty
PL
W artykule zebrano przebadane domieszki do żywicy fenolowej i kompozytów węglowo-fenolowych w celu zwiększenia ich stabilności termicznej, które były badane w kompozytach pod względem właściwości termicznych, z możliwością użycia materiału do celów ablacyjnych. Opisano zjawisko ablacji, procesy zachodzące w żywicy fenolowej podczas oddziaływania temperatury, produkcję włókien oraz ich wpływ zawartości na ablację. Przestawiono, jak domieszki wpływają na stabilność termiczną oraz proces utwardzania żywicy.
EN
The article collects tested additives for phenolic resin and carbon-phenolic composites in order to increase their thermal stability. The article presents additives that were tested in composites in terms of thermal properties, with the possibility of using the material for ablative purposes. The phenomenon of ablation, the processes occurring in the phenolic resin under the influence of temperature, the production of fibers and the effect of their content on ablation, how additives affect the thermal stability and the process of resin curing are described.
Rocznik
Strony
67--97
Opis fizyczny
Biblogr. 73 poz., rys., tab., wykr.
Twórcy
  • Wojskowy Instytut Techniczny Uzbrojenia, ul. Pr. St. Wyszyńskiego 7, 05-220 Zielonka
Bibliografia
  • [1] Abdalla M. O., Ludwick A., Mitchell T., Boron-modified phenolic resins for high performance applications, Polymer 44 (2003) 7353–7359.
  • [2] Ahmad S., Ali S., Salman M., Baluch A. H., A comparative study on the effect of carbon-based and ceramic additives on the properties of fiber reinforced polymer matrix composites for high temperature applications, Ceramics International 47 (2021) 33956-33971.
  • [3] Amirsardari Z., Aghdam R. M., Salavati-Niasari M., Shakhesi S., Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles, Composites Part B 76 (2015) 174e179.
  • [4] Amirsardari Z., Mehdinavaz-Aghdam R., Salavati-Niasari M., Jahannama M. R., Influence of ZrB2 nanoparticles on the mechanical and thermal behaviors of carbon nanotube reinforced resol composite, Journal of Materials Science & Technology 32 (2016) 611-616.
  • [5] Asaro L., Manfredi L. B., Rodrıguez E. S., Study of the ablative properties of phenolic/carbon composites modified with mesoporous silica particles, Journal of Composite Materials 0(0) 1-12, 2018, DOI: 10.1177/0021998318776716.
  • [6] Asaro L., Manfredi L.B., Pellice S., Procaccini R., Rodriguez E.S., Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles, Polymer Degradation and Stability, 144 (2017), 7e16.
  • [7] Bahramian A. R. and Kokabi M., Ablation mechanism of polymer layered silicate nanocomposite heat shield, Journal of Hazardous Materials, vol. 166, no. 1, pp. 445-454, 200.9
  • [8] Changqing L., Kezhi L., Hejun L., Shouyang Z., Yulei Z., The effect of zirconium incorporation on the thermal stability and carbonized product of phenoleformaldehyde resin, Polymer Degradation and Stability, 102 (2014), 180-185.
  • [9] Chen M., Zhijian Ch., Shenhua M., Weiye X., Zhuang M., Lihong G., Guohua Ch., Ablation resistance of resin matrix composites modified with different MAX-phase materials, Composites Science and Technology 229 (2022) 109687.
  • [10] Chin-Lung Chiang, Chen-Chi M. Ma, Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites, Polymer Degradation and Stability 83 (2004) 207-214.
  • [11] Chmielarz L., Naturalne krzemiany warstwowe jako materiały do syntezy katalizatorów dla procesu DeNOx, Wydział Chemii, Uniwersytet Jagielloński.
  • [12] Chunlei Y., Rongjun L., Changrui Z., Yingbin C., Ablation and mechanical properties of 3D braidedC/ZrC–SiC composites with various SiC/ZrCratios, Ceramics International 42 (2016) 19019-19026.
  • [13] Clark G., Composites, 1989.
  • [14] Cottrell T.L., The Strengths of Chemical Bonds, Butterworths Scientific, London, 1958.
  • [15] Daniel A., Srikanth I., and Balasubramanian Kandasubramanian, Effect of Boron Nitride Addition on Ablation Characteristics of Carbon Fiber Reinforced Resorcinol Formaldehyde Composites, Industrial & Engineering Chemistry Research 2020, 59, 19299-19311.
  • [16] Dimitrienko YU. I., Thermal stresses in ablative composite thin-walled structures under intensive heat, International Journal of Engineering Science. Vol. 35, No. 1, pp. 15-31, 1997.
  • [17] Ding J., Huang Z., Qin Y., et al. Improved ablation resistance of carbon/phenolic composites by introducing zirconium silicide particles, Compos Part B 2015; 82: 100-107.
  • [18] Ding J., Sun J., Huang Z., Wang Y., Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles, Composites Part B 157 (2019) 289-294.
  • [19] Ding J., Yang T., Huang Z., Qin Y., Wang Y., Thermal stability and ablation resistance, and ablation mechanism of carbon-phenolic composites with different zirconium silicide particle loadings, Composites Part B 154 (2018) 313-320.
  • [20] Donghwan Ch., Byung I. Y., Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fber-reinforced composites, Composites Science and Technology 61 (2001) 271-280.
  • [21] Duan L., Zhao X., Wang Y., Effects of polycarbosilane interface on oxidation, mechanical, and ablation properties of carbon fiber-reinforced composites, Ceramics International 44 (2018) 22919-22926.
  • [22] Eslami Z., Yazdani F., Mirzapour M. A., Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes, Composites: Part A 72 (2015) 22-31.
  • [23] Feng X., Shizhen Z., Yanbo L., Ma Z., Hezhang L., Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite, Composites & nanocomposites, J Mater Sci (2020) 55:8553-8563.
  • [24] Feng X., Shizhen Z., Zhuang M., Yanbo L., Hezhang L., Jingdan H., Improved interfacial strength and ablation resistance of carbon fabric reinforced phenolic composites modified with functionalized ZrSiO4 sol, Materials and Design 191 (2020) 108623.
  • [25] Guangyuan Y., Xu W., Zhixiong H., Microstructure and antioxidation performance of SiC-ZrO-MoSi2/Ni coated carbon fiber produced by composite electroplating, Ceramics International 44 (2018) 10834-10839.
  • [26] Jingjing S., Jian L., Shujuan W., Yu L., Xinli J., Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide, Composites: Part A 54 (2013) 166-172.
  • [27] Kenneth S., An experimental study of a carbon-phenolic ablation material, NASA TN D-5930, September 1970.
  • [28] Krzyżak A., Sikora J., Plastometryczne wskaźniki przetwarzalności tworzyw fenolowo-formaldenhydowych, Politechnika Lubelska 2010.
  • [29] Kucharczyk W., Ablacyjne właściwości termoochronne polimerowych kompozytów proszkowych, Politechnika Radomska.
  • [30] Kucharczyk W., Kształtowanie ablacyjnych właściwości termoochronnych polimerowych kompozytów proszkowych, Kompozyty 8: 3 (2008) 274-279, 2008.
  • [31] Kucharczyk W., Zużywanie ablacyjne i ścierne laminatów fenolowo-formaldehydowych – szklanych z napełniaczami proszkowymi, Politechnika Radomska.
  • [32] Kumar L. M., Advanced Ablative composites for Aerospace applications, IOP Conf. Series: Materials Science and Engineering 360 (2018) 012036, doi:10.1088/1757-899X/360/1/012036.
  • [33] LEN de Almeida, FAL Cunha, NL Batista, JAFF Rocco, K Iha and EC Botelho, Processing and characterization of ablative composites used in rocket motors, Journal of Reinforced Plastics and Composites 2014, Vol. 33(16) 1474-1484, DOI: 10.1177/0731684414536072.
  • [34] Mayer P., Kaczmar J. W., Właściwości i zastosowania włókien węglowych i szklanych, Tworzywa Sztuczne i Chemia 2008.
  • [35] Naderi A., Mazinani S., Ahmadi S. J., Sohrabian M., Arasteh R., Modified thermo-physical properties of phenolic resin/carbon fiber composite with nano zirconium dioxide, J Therm Anal Calorim (2014) 117:393-401.
  • [36] Natali M., Monti M., Kenny J. M., and Torre L., A nanostructured ablative bulk molding compound: development and characterization, Composites A, vol. 42, no. 9, pp. 1197-1204, 2011.
  • [37] Natali M., Monti M., Kenny J., Torre L., Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique, Journal of Applied Polymer Science 120(5) (2011): 2632-2640.
  • [38] Natali M., Monti M., Puglia D., et al. Ablative properties of carbon black and MWNT/phenolic composites: a comparative study, Compos Part A 2012; 43: 174-182.
  • [39] Natali M., Monti M., Puglia D., Kenny J. M., Torre L., Ablative properties of carbon black and MWNT/phenolic composites: A comparative study, Composites A, vol. 43, 174-182, 2012.
  • [40] Newcomb N. A., Processing, structure and properties of carbon fibers, Compos Part A: Applied Science and Manufacturing, 2016, 91 (1), s. 262-282.
  • [41] Oleksy M., Oliwa R., Szałajko R., Markowska O., Budzik G., Sęp J., Kompozyty żywicy fenolowo-formaldehydowej napełnionej modyfikowanymi bentonitami wzmocnione siatkami z włókna szklanego stosowane jako ściernice, Polimery 2018, Tom LXIII, DOI: dx.doi.org/10.14314/polimery.2018.2.1.
  • [42] Paglia L., Genova V., Marra F., Bracciale M.P., Bartuli C., Valente T., Pulci G., Manufacturing, thermochemical characterization and ablative performance evaluation of carbon-phenolic ablative material with nano-Al2O3 addition, Polymer Degradation and Stability 169 (2019) 108979.
  • [43] Paglia L., Mapelli C., Genova V., Bracciale M. P., Marra F., Bartuli C., Fratoddi I., Pulci G., Effect of ceramic nano-particles on the properties of a carbon-phenolic ablator, Polymer Composites, 2022, DOI: 10.1002/pc.26811.
  • [44] Park J., Kwon D., Wang Z., Roh J., Lee W., Park J., Lawrence K., Effects of carbon nanotubes and carbon fiber reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites, Composites: Part B 67 (2014) 22–29.
  • [45] Ping Z., Shujuan W., Xiaoting Z., Xinli J., The effect of free dihydroxydiphenylmethanes on the thermal stability of novolac resin, Polymer Degradation and Stability 168 (2019) 108946.
  • [46] Qing-Chun YU, Hong WAN, Ablation Capability of Flake Graphite Reinforced Barium-phenolic Resin Composite under Long Pulse Laser Irradiation, Journal of Inorganic Materials, 2012, DOI: 10.3724/SP.J.1077.2012.00157.
  • [47] Romańska P., Kształtowanie właściwości kompozytów na osnowie poliamidów z surowców odnawialnych poprzez dobór rodzaju i ilości napełniaczy, Politechnika Krakowska, Wydział Mechaniczny, Instytut Inżynierii Materiałowej.
  • [48] Sabagh S.,. Azar A. A, Bahramian A. R., High temperature ablation and thermo-physical properties improvement of carbon fiber reinforced composite using graphene oxide nanopowder, Composites Part A: vol. 101, 2017, 326-333.
  • [49] Saghar A., Khan M., Sadiq I., Subhani T., Effect of carbon nanotubes and silicon carbide particles on ablative properties of carbon fiber phenolic matrix composites, Vacuum 148 (2018) 124e126.
  • [50] Schmidt DL and Craig RD., Advanced carbon fabric,phenolics for thermal protection applications, Air Force Wright Aeronautical Laboratories, 1982.
  • [51] Shanshan S., Ying W., Tao J., Xinfeng W., Bo T., Yuan G., Ning Z., Kai S., Yuantao Z., Wenge L., and Jinhong Y., Carbon Fiber/Phenolic Composites with High Thermal Conductivity Reinforced by a Three-Dimensional Carbon Fiber Felt Network Structure, ACS Omega 2022 7 (33), 29433-29442, DOI: 10.1021/acsomega.2c03848.
  • [52] Shujuan W., Xiaolong X., Ya'nan W., Wen W., Xinli J., Influence of poly (dihydroxybiphenyl borate) on the curing behavior and thermal pyrolysis mechanism of phenolic resin, Polymer Degradation and Stability 144 (2017) 378e391.
  • [53] Shujuan W., Xinli J., Yong W., Jingjing S., High char yield of aryl boron-containing phenolic resins: The effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins, Polymer Degradation and Stability 99 (2014) 1-11.
  • [54] Silva H. P., Pardini L. C., Bittencourt E., Shear properties of carbon fibre/phenolic resin composites heat treated at high temperatures, J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 3, pp.363-372, Jul.-Sep., 2016, doi: 10.5028/jatm.v8i3.643.
  • [55] Srebrenkoska V., Bogoeva-Gaceva G., Dimeski D., Composite material based on an ablative phenolic resin and carbon fibers, J. Serb. Chem. Soc. 74 (4) 441–453 (2009).
  • [56] Srikanth I., Daniel A., Kumar S. et al., Nano silica modified carbon-phenolic composites for enhanced ablation resistance, Scripta Materialia, vol. 63, no. 2, pp. 200–203, 2010.
  • [57] Tate J. S., Gaikwad S., Theodoropoulou N., Trevino E., and Koo J. H., Carbon/phenolic nanocomposites as advanced thermal protection material in aerospace applications, Journal of Composites, Volume 2013, 9 pages, http://dx.doi.org/10.1155/2013/403656.
  • [58] Wang B., Shi M., Ding J., Huang Z., Polyhedral oligomeric silsesquioxane (POSS)-modified phenolic resin: Synthesis and anti-oxidation properties, e-Polymers, https://doi.org/10.1515/epoly-2021-0031.
  • [59] Wang D., Ding J., Wang B., Zhuang Y., Huang Z., Synthesis and Thermal Degradation Study of Polyhedral Oligomeric Silsesquioxane (POSS) Modified Phenolic Resin, Polymers 2021, 13, 1182.
  • [60] Wang H., Dong C., Hu W., Dang H., Du C., Ou Y., Shi M., Zhang Ch., Time-dependent high-temperature compressive failure behavior of high-silica/boron-phenolic composites modified with boron carbide and talc, Composites Science and Technology, 221 (2022) 109226.
  • [61] Wang S., Huang H., Tian Y., Effects of zirconium carbide content on thermal stability and ablation properties of carbon/phenolic composites, Ceramics International 46 (2020) 4307–4313.
  • [62] Wang S., Wang Y., Bian C., Zhong Y., Jing X., The thermal stability and pyrolysis mechanism of boron-containingphenolic resins: The effect of phenyl borates on the char formation, Applied Surface Science 331 (2015) 519–529.
  • [63] Wenjie Y., Yang W., Zhenhua L., Fenghua Ch., Hao L., Tong Z., Improved Performances of SiBCN Powders Modified Phenolic Resins-Carbon Fiber Composites, Processes 2021, 9(6), 955; https://doi.org/10.3390/pr9060955.
  • [64] Xiao J., Das O., Mensah R. A., Jiang L., Xu Q., Berto F., Ablation behavior studies of charring materials with different thickness and heat flux intensity, Case Studies in Thermal Engineering 23 (2021) 100814.
  • [65] Xue-Tao S., Ke-Zhi L., He-Jun L., Qian-Gang F., Shu-Ping L., Fei D., The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame, Corrosion Science, vol. 53, Issue 1 (2011) 105-112.
  • [66] Yilin R., Huang Z., Shi M., Deng Z., Dong C., Decomposition mechanism of boron phenolic resin composites under temperature gradient, Plast., Rubber Compos. 51 (2022) 163-172.
  • [67] Yu L., Zushun L., Xiaodong C., Di W., Jincheng L., Lijiang H., Study on phenolic-resin/carbon-fiber ablation composites modified with polyhedral oligomeric silsesquioxanes, 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 605-608, January 2009.
  • [68] Yuanyuan M., Yu Y., Chunxiang L., Xiaodong W., Xingchen L., Shijie W., Kuan L., Junqing Y., Enhanced thermal resistance of carbon/phenolic composites by addition of novel nano-g-C3N4, Composites Science and Technology 180 (2019) 60-70.
  • [69] Yuanyuan M., Yu Y., Chunxiang L., Xiaodong W., Xingchen L., Kuan L., Shijie W., Qianxiu L., Extraordinary improvement of ablation resistance of carbon/phenolic composites reinforced with low loading of graphene oxide, Composites Science and Technology 167 (2018) 53-61.
  • [70] Zhang L., Zhang Y., Wang L., Yao Y., Wu J., Sun Y., Tian M., Jing Liu, Phenolic resin modified by boron-silicon with high char yield, Polymer Testing 73 (2019) 208-213.
  • [71] Zhaoqi N., Gang L., Xiaoyan M., Shuai S., Yi X., Lifeng C., Fang C., Chengshuang Z., Xiao H., Synergetic effect of O-POSS and T-POSS to enhance ablative resistant of phenolic-based silica fiber composites via strong interphase strength and ceramic formation, Composites: Part A 155 (2022) 106855.
  • [72] Zixuan L., Xue J., You L., Jingru J., Xinli J., Yuhong L., Time-temperature-transformation diagram of modified resol phenolic resin and the thermomechanical performance of resol phenolic resin/glass fabric composite, Polymers for Advanced Technologies 2018.
  • [73] Zuo-Jia W., Dong-Jun K., Ga-Young G., Woo-Il ., Jong-Kyoo P., K. Lawrence DeVries, Joung-Man P., Ablative and mechanical evaluation of CNT/phenolic composites by thermal and microstructural analyses, Composites: Part B 60 (2014) 597-602.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0936b301-4295-47d6-acdb-0dce602527c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.