PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulations of thermal processes in tooth proceeding during cold pulp vitality testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper deals with the mathematical modeling of the thermal processes occurring in the tooth, during a very brief contact (a few seconds) with a very cold liquid on a part of the tooth crown. In this way one can simulate a heat transfer in tooth proceeding during a dental diagnostic test - pulp vitality testing. The impact of rapid ambient thermal changes acting on the tooth can cause toothache. Methods: The mathematical model: a system of partial differential equations with initialboundary conditions (the axially-symmetrical problem) and their numerical solutions using the control volume method is discussed. Results: Simulation results of the kinetics of the temperature changes inside the tooth are presented. The example of the control volume mesh (using the Voronoi polygons) well describing the shape of a molar tooth is given. Conclusions: The simulation results (the temperature distribution in the tooth at any moment of the simulation time and the kinetics of temperature variation at the points of the considered tooth domain) can help dentists in the selection of an appropriate method of treatment.
Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Institute of Computer and Information Sciences, Czestochowa University of Technology, Czestochowa, Poland
autor
  • Higher School of Labour Safety Management, Katowice, Poland
autor
  • Institute of Mathematics, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1]. Chen E., Abbott P.V., Dental Pulp Testing: A Review, Int. J. Dent., 2009, 365785.
  • [2]. Chong B.S. Harty’s Endodontics in Clinical Practice, 6th Ed., Churchill Livingstone, 2010.
  • [3]. Ciesielski M., Mochnacki B. Application of the Control Volume Method using the Voronoi polygons for numerical modeling of bio-heat transfer processes, J Theoret Appl Mech, 2014, vol. 52(4), 927-935.
  • [4]. Ciesielski M., Mochnacki B. Numerical simulation of the heating process in the domain of tissue insulated by protective clothing, J Appl Math Comput Mech, 2014, vol. 13(2), 13-20.
  • [5]. De Vree J.H.P., Spierings Th.A.M., Plasschaert A.J.M. A Simulation Model for Transient Thermal Analysis of Restored Teeth, J Dent Res, 1983, vol. 62, 756-759.
  • [6]. Domanski Z., Ciesielski M., Mochnacki B. Application of Control Volume Method using the Voronoi Tessellation in Numerical Modelling of Solidification Process, in: Current Themes in Engineering Science 2009, Korsunsky A. (ed.), AIP Conf Proc, 2010, vol. 1220, 17-26.
  • [7]. Gopikrishna V., Pradeep G., Venkateshbabu N. Assessment of pulp vitality: a review, Int. J Paediat Dent, 2009, vol. 19(1), 3-15.
  • [8]. Jafarzadeh H., Abbott P.V. Review of pulp sensibility tests. Part I: general information and thermal tests, Int Endod J, 2010, vol. 43, 738–762.
  • [9]. Jakubinek M.B., O'Neill C., Felix C., Price R.B., White M.A. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations, Dent Mater, 2008, vol. 24, 1468-1476.
  • [10]. Lin M., Xu F., Lu T.J., Bai B.F. A review of heat transfer in human tooth - Experimental characterization and mathematical modeling, Dent Mater, 2010, vol. 26, 501-513.
  • [11]. Lin M., Liu Q.D., Xu F., Bai B.F., Lu T.J. In Vitro investigation of heat transfer in human tooth, 4th Int Conf Adv Exp Mech (18-20.11.2009), Singapore, 2009.
  • [12]. Majchrzak E. Application of different variants of the BEM in numerical modeling of bioheat transfer problems, Mol Cell Biomech, 2013, vol. 10(3), 201-232.
  • [13]. Majchrzak E., Mochnacki B., Dziewonski M., Jasinski M. Numerical modeling of hyperthermia and hypothermia processes, Computational Materials Science, PTS 1-3. Book Series: Adv Mater Res, 2011, vol. 268-270, 257-262.
  • [14]. Mochnacki B., Majchrzak E. Sensitivity of the skin tissue on the activity of external heat sources, Comp Model Eng Sci, 2003, vol. 4(3-4), 431-438.
  • [15]. Mochnacki B., Piasecka Belkhayat A. Numerical modeling of skin tissue heating using the interval finite difference method, Mol Cell Biomech, 2013, vol. 10(3), 233-244.
  • [16]. Okabe A., Boots B., Sugihara K., Chiu S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd Ed., Wiley, 2000.
  • [17]. Piasecka Belkhayat A. Interval boundary element method for 2D transient diffusion problem using the directed interval arithmetic, Eng Anal Bound Elem, 2011, vol. 35(3), 259-263.
  • [18]. Preiskorn M., Żmuda S., Trykowski J., Panas A., Preiskorn M. In vitro investigations of the heat transfer phenomena in human tooth, Acta Bioeng Biomech, 2003, vol. 5(2), 23- 36.
  • [19] SIEDLECKI J., CIESIELSKI M., Simulations of thermal processes in a restored tooth, J. Appl. Math. Comput. Mech., 2013, Vol. 12(4), 103–108.
  • [20] SPIERINGS T.A., PETERS M.C., BOSMAN F., PLASSCHAERT A.J., Verification of theoretical modeling of heat transmission in teeth by in vivo experiments, J. Dent. Res., 1987, Vol. 66(8), 1336–1339.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-093580b2-d532-4fc4-b7cd-d966792e7c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.