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Abstract:
 

Purpose: This paper deals with the mathematical modeling of the thermal processes 

occurring in the tooth, during a very brief contact (a few seconds) with a very cold liquid on a 

part of the tooth crown. In this way one can simulate a heat transfer in tooth proceeding 

during a dental diagnostic test - pulp vitality testing. The impact of rapid ambient thermal 

changes acting on the tooth can cause toothache.  

Methods: The mathematical model: a system of partial differential equations with initial-

boundary conditions (the axially-symmetrical problem) and their numerical solutions using 

the control volume method is discussed.  

Results: Simulation results of the kinetics of the temperature changes inside the tooth are 

presented. The example of the control volume mesh (using the Voronoi polygons) well 

describing the shape of a molar tooth is given. 

Conclusions: The simulation results (the temperature distribution in the tooth at any moment 

of the simulation time and the kinetics of temperature variation at the points of the considered 

tooth domain) can help dentists in the selection of an appropriate method of treatment.  

 

Keywords:  bio-heat transfer, mathematical modeling, thermal processes, tooth tissue, dental 

pulp testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1. Introduction  



 

 

Dental pulp testing (also known as a vitality test or a sensibility testing) [1], [2], [7], 

[8] is an investigation that provides important diagnostic information to the dental clinician. 

The tooth is composed of three layers: enamel, dentil and the pulp. The outer layer, the 

enamel, is made of hard crystal and is the most inorganic. The dentin lies just under the 

enamel and is the main structure of the tooth having properties as a bone-like substance. The 

dentine consists of microscopic fluid-filled channels called dentine tubules. In the middle of 

the tooth is the pulp. The “healthy” pulp is the vital tissue consisting of numerous blood 

vessels, nerves and cells, but the pulp in the traumatized tooth is not necessarily innervated.  

There are two general types of pulp testing [1], [7]: a thermal test (cold and heat) and an 

electrical one. In this paper only cold thermal test is considered. In this test, a refrigerant (i.e. 

dichlorodifluoro-methane, ethyl chloride at -50°C) is sprayed on a small cotton pellet and 

applied to the tooth crown. This test causes contraction of the dentinal fluid within the 

dentinal tubules. The rapid flow of fluid in these tubules results from the hydrodynamic forces 

acting on the nerve fibers. This can cause a sharp sensation (pain) in the healthy, innervated 

pulp of the tooth, which takes a few seconds after the removal of cold stimulus [2].  

The research presented in this paper is related to the computations of temperature distribution 

in the molar tooth. The aim of this paper is the mathematical modeling of the thermal 

processes occurring in the tooth tissues (enamel, dentin, pulp) being in contact with cold 

liquid (a moistened cotton pellet). Different contact times with the cold liquid are analyzed. 

The geometry of the tooth is treated here as an axially-symmetrical domain. The detailed 

knowledge of thermal processes occurring in the tooth domain will allow optimization of 

diagnostics and treatment strategies for clinical applications. There is need to study the 

thermal behavior of tooth, and it is the main aim of this research. 

The heat transfer in the tooth domain was considered e.g. in work [18], but the mathematical 

model is based on the Fourier equation. In works [5], [19] simulations were considered that 

related to different types of dental fillings in a tooth which was in contact with a cold liquid. 

The research in paper [10] deals with the thermal stimulation (the 1D task) of dentine 

correlated with fluid flow in the dentinal tubule. It should be pointed out that the pulp is a 

vital tissue, and the models based on the Pennes equation containing terms with the blood 

perfusion and metabolism should be applied. The details concerning the bio-heat transfer 

models one can find, among others, in [4], [10], [12]-[14]. It is evident that the analytical 

solution of the problem considered is impossible and the numerical methods should be used. 

In this paper the control volume method (CVM) [3], [6] using the Voronoi tessellation [16] in 

order to construct the geometrical mesh covering the tooth domain is applied. 



 

 

The choice of the numerical method is not accidental. The CVM (in particular using the 

Voronoi tessellation) constitutes a very effective tool for an approximate solution of 

boundary-initial problems connected with the mathematical models of heat transfer processes. 

The different shapes of control volumes allow us to reconstruct the real shape of the 2D object 

both in the case of the homogeneous and heterogeneous domain. The domain discretization 

can be locally concentrated, for example, close to the external boundary. The shape of 

Voronoi polygons assures us  the possibility of  correct and exact recording  energy balances 

formulation . They constitute the base for construction of the final system of linear equations 

corresponding to the transition from time t to time t+ t.  

 2. Materials and methods 

2.1. Mathematical model  

The tooth domain (treated as the axially symmetrical object) is shown in Fig. 1. The domain 

consists of the following sub-domains: the enamel ( 1), the dentin ( 2) and the pulp ( 3). 

The outer surface limiting the domain (boundaries b1 and b2) is in thermal contact with 

environment (air). Additionally, in a short period of time, the boundary b2  is subjected to the 

very cold liquid. The boundary 0 represents contact with the gum. 

 

Fig. 1. Structure of a typical molar tooth [source: http://www.polskistomatolog.pl] 

and the considered tooth domain (longitudinal section) 

The temperature field in the domain considered is described by the following system of 

equations 
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where index m identifies the particular sub-domains (1 – the enamel, 2 – the dentin, 3 – the 

pulp), T [°C] is the temperature, r, z [m], t [s] denote spatial coordinates and time, 

c [J/(m
3
 °C)],  [W/(m °C)] are the volumetric specific heat and the thermal conductivity, 

respectively. The Laplace operator in the cylindrical axisymmetrical coordinates system is 

given as 
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In Eq. (1) the terms Qper and Qmet [W/m
3
] are the capacities of volumetric internal heat 

sources connected with the blood perfusion and metabolism, respectively. Assuming that the 

pulp is fed by a large number of uniformly spaced capillary blood vessels and the blood 

vessels are not present in the dentil and enamel, one has 

  
   3 3

0, if 1,2

, , , if 3
per m

b b b

m
Q T

c G T T T r z t m

 
 

    

 (3) 

where Gb3 is the blood perfusion rate in the pulp [m
3

(blood)/(s m
3

(tissue))], cb is the blood 

volumetric specific heat and Tb is the blood temperature. The metabolic heat source Qmet 3 in 

the pulp sub-domain can be treated as a constant value or a temperature-dependent function 

[10], and simultaneously Qmet 1 = Qmet 2 = 0 for the enamel and dentil sub-domains have been 

assumed. 

Eq. (1) is supplemented by the boundary-initial conditions. For t = 0 the initial condition is 

known 
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On the contact surfaces between tooth sub-domains, the continuity conditions are assumed 
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where /n is a normal derivative. On the external surfaces of the sub-domains, the Dirichlet 

(on the surfaces - 0 and z) and the Robin (on the surface of the tooth crown - b1 and b2) 

boundary conditions are given 
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where air, liq [W/(m
2
 °C)] are the convective heat transfer coefficients and Tamb air, Tamb liq 

[°C] are the temperatures of the air or fluid, respectively. In the mathematical model the 

following simplifications are assumed: the temperature of the fluid grows according to a given 

function and the heat transfer coefficients are treated as the constant values (dependent on the 

several factors (fluid velocity, surface geometry, nature of motion, etc.). Time t1 is a moment 

of simulation time in which the contact of the moistened cotton pellet with cold liquid takes 

place. Time tcontact is the contact time of the pellet with the tooth crown and t2 is the final time 

of simulation. In the time interval t  (0, t1], the patient has an open mouth and breathing - 

this causes cooling of the tooth with respect to the initial temperature before starting a 

diagnostic test. On the boundary r, the non-flux boundary condition is given  
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2.2. Control volume method 

At the stage of numerical modeling the control volume method (CVM) using the Voronoi 

tessellation has been used. A similar version of CVM for the 2D task was discussed in detail 

by Ciesielski and Mochnacki in [3], [6]. In this paper the control volumes are in the shape of 

rings. So, the domain analyzed (the longitudinal section) of the tooth is divided into N 

volumes (the section of the ring-shaped element corresponds to the shape of the Voronoi 

polygon). In Fig. 2 the example of the control volume mesh (N = 1835) and the selected 

control volume are presented.  

The CVM algorithm allows one to find the transient temperature field at the set of nodes 

corresponding to the central points of the control volumes, while the nodal temperatures are 

found on the basis of energy balances for the successive CV. 

 



 

 

   

Fig. 2. The control volume mesh in the section of the tooth  

and selected ring-shaped control volume  

In Fig. 3 the cross-section of control volume CVi with the central node pi = (ri, zi) is presented. 

This cross-section is a non-regular ni-sided polygon, at the same time ni is the number of 

adjacent control volumes CVi(j), for j = 1, …, ni, containing the nodes pi(j). Subscript i(j) 

indicates the index number of the adjacent CV. The distance between nodes pi and pi(j) is 

denoted by hi(j), whereas the area of contact surface (here: the surface obtained by rotation of 

the polygon side around the axis z) between two adjacent CVi and CVi(j) is equal to Ai(j) and the 

volume of ring-shaped CVi is denoted by Vi. If the polygon surface Ai(j) is covered by the 

outside boundary of sub-domains then the ‘virtual’ neighbouring node pi(j) lies outside the 

considered domain and in the computational algorithm, the index i(j) represents the index 

(tag) of the boundary (here: 0, b1, b2, r or z). 

 



 

 

Fig. 3. Control volume CVi 

It is assumed for each considered control volume CVi that the thermal capacities and the 

capacities of internal heat sources are concentrated at the nodes representing elements, while 

the thermal resistances are concentrated on the sectors joining the nodes. The energy balances 

corresponding to the heat exchange between the analyzed control volume CVi and adjoining 

control volumes results from the integration of energy equation (1) with respect to time t and 

volume CVi. Let us consider the interval of time t = t 
f 

t 
f
. Then 
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Applying the divergence theorem for the volume CVi bounded by the surface  1

in

i i jj
A A


  

one obtains 
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The numerical approximation of the left-hand side of equation (11) can be accepted in the 

form 
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where ci
f
 is an integral mean of thermal capacity and this value is approximated by the 

volumetric specific heat corresponding to the temperature T 
f
 (explicit scheme). The source 

term in Eq. (11) for the pulp sub-domain 3 is treated in a similar way 
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The term determining heat conduction between CVi and its neighbourhoods CVi(j) can be 

written (for the explicit scheme) in the form  
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In the case when Ai(j) is placed between CVi and internal CVi(j) then ( )

f

i j  is approximated as 

follows  
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where ij is the harmonic mean thermal conductivity between nodes pi and pi(j) defined as 
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and ( ) ( ) /f f

i j i j ijR h   is the thermal resistance. If Ai(j) is a part of the boundary b1 or b2 then 

one of the boundary conditions (7) or (8) is used and in this case, the following formula is 

applied  
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where Tamb(t
f
)  {Tamb air(t

f
), Tamb liq(t

f
)} and   { air, liq} should be selected, respectively. 

One can see, that the denominator in the above formula corresponds to the thermal resistance 

related to the Robin boundary condition. If Ai(j) is a part of the boundary 0 or z then the 

Dirichlet boundary condition (6) is used and the formula determining ( )

f

i j  is of the form 
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In the case when Ai(j) coincides with the axis r = 0 then 
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At the stage of numerical computations, in the place of  a large value i.e. 10
10

 can be 

assigned. 

In order to ensure the unification of notations of the boundary formulas (17), (18) and (19) 

with the general formula (15), one can use the following values 
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dependent on the appropriate boundary conditions. 

The energy balance (11) written in the explicit form leads to the equation 
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The initial condition (4) is implemented as 0 , 1,...,i initT T i N  . 

In order to ensure the stability condition of explicit scheme (22) - the coefficient related with 

f

iT must be positive 
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for all control volumes CVi, i = 1, …, N. Hence, it allows one to determine the critical time 

step t 
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 3. Results  

Two numerical simulations of thermal processes proceeding in the tooth domain have been 

executed. In Fig. 2 the shape and dimensions of the considered domain and the control 

volume mesh are presented.  

The following thermophysical parameters of the tooth layers have been assumed [9]: c1 = 750, 

c2 = 1170, c3 = 4200 J/(kg K), 1 = 2900, 2 = 2100, 3 = 1000 kg/m
3
, 1 = 0.92, 2 = 0.63, 

3 = 0.59 W/(m K). The initial temperature is Tinit = 36.6 C, the temperature of the ambient 

fluid is Tliq amb(t) = 50 + 5·(t t1) C and the heat transfer coefficient is liq = 1000 

W/(m
2
 °C), while parameters for the air are the following Tair amb(t) = 25 C and air = 25 

W/(m
2
 °C). In simulations two contact times tcontact = 2s and tcontact = 4s, the time limits t1 = 60 

s, t2 = 90 s and the tissue temperature Ttissue = 36.6 C have been assumed. 

In Figures 4, 5 and 6, the isotherms in the tooth sub-domains for times 60 s, 60 s + tcontact, and 

75 s are shown, respectively. The kinetics of temperature variation at the selected points A, B 

and C located near the boundaries of tooth sub-domains (see Fig. 2) are presented in Fig. 7. 

The last Fig. 8 shows the time derivatives of temperature at the points B and C. The control 

volumes represented by the central nodes B and C are placed in the dentin and the pulp sub-

domains, respectively.  

 

Fig. 4. Temperature distribution in the tooth sub-domains at time 60s 



 

 

 

Fig. 5. Temperature distribution in the tooth sub-domains at time 60+tcontact [s] 

 

Fig. 6. Temperature distribution in the tooth sub-domains at time 75s 

 



 

 

Fig. 7. The kinetics of temperature variation at selected points (see Fig. 2)  

  

Fig. 8. The time derivatives at the points B and C (see Fig. 2)  



 

 

 4. Discussion 

First of all, the authors assumed that the temperature of the tooth at the initial moment of 

time corresponds to the average body temperature (36.6°C). Next, for 1 minute the patient has 

his mouth open, while the dentist prepares to perform a diagnostic test. At this time, the tooth 

is cooled by the process of breathing (periodic breathing out of cool air and warm air 

exhalation). At the stage of numerical modeling the certain simplification is introduced, 

namely a constant average temperature in the oral cavity for a period of 1 minute is assumed. 

The amount of heat dissipated by the tooth at this time depends on, among others, the 

frequency and intensity of breathing, the geometry of the mouth, the ambient temperature and 

ambient humidity, etc. It is a complex process, and the heat exchange at the stage of 

calculations was essentially simplified by the assumption of the constant heat transfer 

coefficient occurring in the Robin boundary condition. On the basis of the temperature field 

shown in Figure 4 one can see that, as a result of cooling, the maximum temperature drop on 

the crown surface equals about 3 K. The temperature field in Fig. 4 corresponds to the state 

where a rapid cooling of the tooth (under the influence of an external factor) begins. The 

problem of rapid cooling in the modeled task has also been simplified by the use of the third 

kind of boundary condition (the Robin condition) and the adoption of the surrounding 

medium temperature in the form of functional dependence, while the heat transfer coefficient 

is assumed to be a constant value. The course of the function Tliq amb(t) depends on many 

factors, but it should be an increasing function because the soaked swab (the moistened cotton 

pellet) is heated by the warmer tooth in the mouth. 

Fig. 5 and 6 show the temperature fields obtained for different contact times between the 

coolant and tooth, while in Figure 7 the temperature histories at the selected points are 

presented. It can be seen that the temperature differences on the crown surface in the period of 

two analyzed contact times during rapid cooling are small. In contrast, the differences are 

more noticeable in the inner layers of the tooth - especially in the areas close to the boundary 

between the enamel and dentin (point B). Analyzing the kinetics of temperature changes, one 

can conclude that the reduction of temperature inside the tooth takes place even after the tooth 

contact with a cotton swab. The temperature drop in the dentin layer at point B (see Figure 8) 

is noticeable even a few seconds after the direct liquid cooling and the maximum value 

reaches almost 3 K/s. In the pulp layer at point C, the temperature drop is smaller (up to 0.5 

K/s) and takes a long period of time. The rapid drop in temperature in the dentin layer causes 

a change in pressure of the dentinal fluid within the channels and its contraction (according to 



 

 

one theory of pain sensation), so that movement of the fluid can cause irritation of the nerve 

fibers. In the damaged (dead) tooth there are no active nerve fibers and the pain should not be 

felt. 

So far, we did not find any similar results (from both experimental and mathematical 

models) in the literature that can be used to analyse and compare with our numerical 

simulation results. From an experimental point of view, the use of the vital tooth (in the in 

vivo investigation) is rather impossible for ethical reasons. The widely used method to study 

the thermal behaviour of human tooth in vitro is based on thermocouples, but it can be 

technically challenging to the study due to the small size and complex geometrical structure 

of the biological tooth. These experimental results may contain measurement errors and their 

cause is, i.e. low spatial resolution and contact measurement. For a vital tooth, the subgingival 

part of the tooth is surrounded by the environmental tissues with blood vessels. 

Several works were related to the experiments with teeth. In work [20] the replica of an 

axisymmetric model of tooth for experimental purposes has been used in order to simulate the 

thermal processes occurring while drinking hot liquids. Jakubinek et al. [9] have been 

modelled and simulated the process of photopolymerization and related to it the changes in 

temperature during light-curing of dental restorations. In paper [11], the authors presented the 

experimental results (also in vitro) as the field temperature distribution on the surface of a 

cross-section of a human molar tooth, sliced longitudinally into two halves. The tooth was 

heated by circulating hot water and cooled down by air, and at the same time the infrared 

camera registered the tooth surface temperature. One can notice that such experimental 

approaches (the research carried out in the laboratories) do not fully correspond with the 

biological reality. The main aim of experimental studies, first of all, was to determine the 

thermophysical parameters of particular layers of a tooth and the parameters of conditions 

acting on the tooth, that can be used in simulations performed on the basis of mathematical 

models. It should be mentioned that the way of modelling of the heat transfer problem 

proceeding during pulp vitality testing so far do not appear in the known works.  

 5. Conclusions 

A very common problem discussed in academic works is tooth sensitivity to various 

external stimulations. The model presented can provide information related to the temperature 

field in the tooth and the kinetics of the temperature changes in the various tooth sub-domains 

and the simulation results can assist dentists in the selection of an appropriate method of 

diagnostics and treatment. For example, directly after the completion of freezing the 



 

 

temperature at point A increases, while at points B and C it continues to decrease. This results 

from the reduced temperature of the enamel sub-domain. So, the cooling effect lasts longer 

than the thermal contact with the coolant. In other words, a sudden drop of temperature at 

points placing in pulp and dentin sub-domains can cause sharp pain in the tooth, lasting even a 

few seconds after completion of freezing. 

The results of numerical simulations discussed here concern the selected tooth geometry, but 

the algorithm presented can be used for the different parameters occurring in the mathematical 

model and any geometrical shape of the tooth. 

In this paper the possibilities of the CVM application for a numerical solution of the bioheat 

transfer are shown. The control volume meshes (using the Voronoi polygons) accurately 

reproduce the geometry of the tooth (if the assumption that 2D axially-symmetrical 

approximation is acceptable) – it is an essential advantage of the method proposed. 

In the future, research is planned connected with the elaboration of the numerical algorithm 

based on the control volume method in which the thermophysical parameters of tooth sub-

domains will be treated as the interval numbers [15], [17]. This results from the fact that the 

biological tissue properties are dependent on the individual characteristics such as gender, age 

etc. Additionally, the experimental research using the thermal imaging techniques will be 

realized. Such a study will allow one (at least) to observe the course of transient temperature 

field on the surface of the tooth crown. 
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