PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of mechanical and thermomechanical properties of epoxy-basalt composites modified with halogen-free intumescent flame retardants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to examine the effect of flame retardants (FRs) on the mechanical and thermomechanical properties of epoxy composites reinforced with basalt fibers. To effectively modify fire behavior, it is usually necessary to introduce significant amounts of FRs, which raises many concerns due to the potential deterioration of other functional properties, including mechanical performance. In this work, 30 wt.% halogen-free FRs, including a two-component FR (ammonium polyphosphate with pentaerythritol) and melamine cyanurate, were introduced into the polymer matrix. The unmodified and intumescent FR-modified epoxy resin composites reinforced with basalt fibers were subjected to static flexural test and thermomechanical properties assessment. The research results were correlated with the analysis of changes in the chemical composition assessed using Fourier transform infrared spectroscopy. As a result, the saturation of the reinforcing fabrics by the modified epoxy resin was limited, which caused a different failure mechanism under static bending and impact test conditions. Both FR systems reduced the flammability of the modified epoxy laminates along with also acceptable deterioration of the mechanical properties. The most beneficial effects considering the combination of all the analyzed features were noted for the two-component FR system containing ammonium polyphosphate and pentaerythritol.
Rocznik
Strony
239--246
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, al. Piastów 19, 70-310 Szczecin, Poland
  • Poznan University of Technology, Institute of Materials Engineering, ul. Jana Pawła II 24, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Polymer Processing Division, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Institute of Mechanical Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Mirzamohammadi S., Eslami-Farsani R., Ebrahimnezhad- Khaljiri H., The characterization of the flexural and shear performances of laminated aluminum/ jute-basalt fibers epoxy composites containing carbon nanotubes: As multiscale hybrid structures, Thin-Walled Struct. 2020, 179, 109690, DOI: 10.1016/j.tws.2022.109690.
  • 2. Tripathy P., Biswas S., Mechanical and thermal properties of basalt fiber reinforced epoxy composites modified with CaCO3 nanoparticles, Polym. Compos. 2022, 43, 7789-7803, DOI: 10.1002/pc.26883.
  • 3. Amberkar T., Mahanwar P., Thermal energy management in buildings and constructions with phase change materialepoxy composites: a review, Energy Sources, Part A Recover. Util. Environ. Eff. 2023, 45, 727-761, DOI: 10.1080/15567036.2023.2171514.
  • 4. Yoon M., Lim C.S., Comparative experiments on amine vs. acid anhydride curing agents for epoxy resin required for automotive parts, J. Polym. Res. 2023, 30, 9, DOI: 10.1007/s10965-022-03396-6.
  • 5. Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A., Polymer composite materials: A comprehensive review, Compos. Struct. 2021, 262, 113640, DOI: 10.1016/j.compstruct.2021.113640.
  • 6. Pendhari S.S., Kant T., Desai Y.M., Application of polymer composites in civil construction: A general review, Compos. Struct. 2008, 84, 114-124, DOI: 10.1016/j.compstruct.2007.06.007.
  • 7. Gu G., Zhang Y., Dong S., Wei C., Lin Z., Shen H., Meng F., Synergetic improvement of the thermal conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites by interleaving BN@ZnO particles, J. Appl. Polym. Sci. 2023, 140, e53583, DOI: 10.1002/app.53583.
  • 8. Matykiewicz D., Hybrid epoxy composites with both powder and fiber filler: A review of mechanical and thermomechanical properties, Materials 2020, 13, 1802, DOI: 10.3390/ma13081802.
  • 9. Wang B., Yin Z., Zhang Y., Jia P., He R., Yu F., Hu Y., Robust flame-retardant, super mechanical laminate epoxy composites with tunable electromagnetic interference shielding, Mater. Today Phys. 2022, 26, 100724, DOI: 10.1016/j.mtphys.2022.100724.
  • 10. Hosseini A., Raji A., Improved double impact and flexural performance of hybridized glass basalt fiber reinforced composite with graphene nanofiller for lighter aerostructures, Polym. Test. 2023, 125, 108107, DOI: 10.1016/j.polymertesting.2023.108107.
  • 11. Zhang J., Zhu Q., Wang Z., Wang X., Yan J., Flake-like ZnAl alloy powder modified waterborne epoxy coatings with enhanced corrosion resistance, Prog. Org. Coat. 2023, 175, 107367, DOI: 10.1016/j.porgcoat.2022.107367.
  • 12. Umarfarooq M.A., Gouda P.S.S., Banapurmath N.R., Kittur M.I., Khan T., Parveez B., Sebaey T.A., Badruddin I.A., Post‐curing and fiber hybridization effects on mode‐II interlaminar fracture toughness of glass/carbon/epoxy composites, Polym. Compos. 2023, 44, 4734-4745, DOI: 10.1002/pc.27436.
  • 13. Barczewski M., Sałasińska K., Szulc J., Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties, Polym. Test. 2019, 75, 1-11, DOI: 10.1016/j.polymertesting.2019.01.017.
  • 14. Barczewski M., Sałasińska K., Raś W., Hejna A., Michałowski S., Kosmela P., Aniśko J., Boczkowska A., Szostak M., The effect of hybridization of fire retarded epoxy/flax-cotton fiber laminates by expanded vermiculite: Structure-property relationship study, Adv. Ind. Eng. Polym. Res. 2023, 6, 181-194, DOI: 10.1016/j.aiepr.2023.01.005.
  • 15. Moraczewski K., Karasiewicz T., Suwała A., Bolewski B., Szabliński K., Zaborowska M., Versatile polypropylene composite containing post-printing waste, Polymers 2022, 14, 5335, DOI: 10.3390/polym14245335.
  • 16. Patrick Lim W.K., Mariatti M., Chow W.S., Mar K.T., Effect of intumescent ammonium polyphosphate (APP) and melamine cyanurate (MC) on the properties of epoxy/glass fiber composites, Compos. Part B Eng. 2012, 43, 124-128, DOI: 10.1016/j.compositesb.2011.11.013.
  • 17. Dhand V., Mittal G., Rhee K.Y., Park S.J., Hui D., A short review on basalt fiber reinforced polymer composites, Compos. Part B Eng. 2015, 73, 166-180, DOI: 10.1016/j.compositesb.2014.12.011.
  • 18. Fiore V., Scalici T., Di Bella G., Valenza A., A review on basalt fibre and its composites, Compos. Part B Eng. 2015, 74, 74-94, DOI: 10.1016/j.compositesb.2014.12.034.
  • 19. Shekarchi M., Farahani E.M., Yekrangnia M., Ozbakkaloglu T., Mechanical strength of CFRP and GFRP composites filled with APP fire retardant powder exposed to elevated temperature, Fire Saf. J. 2020, 115, 103178, DOI: 10.1016/j.firesaf.2020.103178.
  • 20. Matykiewicz D., Przybyszewski B., Stanik R., Czulak A., Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process, Compos. Part B Eng. 2017, 108, 224-231, DOI: 10.1016/j.compositesb.2016.10.003.
  • 21. Salasinska K., Barczewski M., Aniśko J., Hejna A., Celiński M., comparative study of the reinforcement type effect on the thermomechanical properties and burning of epoxybased composites, J. Compos. Sci. 2021, 5, 89, DOI:10.3390/jcs5030089.
  • 22. Yasir M., Amir N., Ahmad F., Ullah S., Jimenez M., Synergistic effect of basalt fiber on the thermal properties of intumescent fire retardant coating, Mater. Today Proc. 2019, 16, 2030-2038, DOI: 10.1016/j.matpr.2019.06.088.
  • 23. Yasir M., Amir N., Ahmad F., Ullah S., Jimenez M., Effect of basalt fibers dispersion on steel fire protection performance of epoxy-based intumescent coatings, Prog. Org. Coat.2018, 122, 229-238, DOI: 10.1016/j.porgcoat.2018.05.029.
  • 24. Attia N.F., Hegazi E.M., Abdelmageed A.A., Smart modification of inorganic fibers and flammability mechanical and radiation shielding properties of their rubber composites, J. Therm. Anal. Calorim. 2018, 132, 1567-1578, DOI:10.1007/s10973-018-7141-y.
  • 25. ISO 5660-1:2015: Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement).
  • 26. Fraga F., Burgo S., Nunez E.R., Curing kinetic of the epoxy system badge n = 0/1,2 DCH by fourier transform infrared spectroscopy (FTIR), J. Appl. Polym. Sci. 2001, 82, 3366-3372, DOI: 10.1002/app.2195.
  • 27. Gonzalez M.G., Cabanelas J.C., Baselga J., Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, in: Infrared Spectrosc. - Mater. Sci. Eng. Technol., InTech, 2012, DOI: 10.5772/36323.
  • 28. Chen W.Y., Wang Y.Z., Chang F.C., Thermal and flame retardation properties of melamine phosphate-modified epoxy resins, J. Polym. Res. 2004, 11, 109-117, DOI: 10.1023/B:JPOL.0000031069.23622.bc.
  • 29. Jones W.J., Orville-Thomas W.J., The infra-red spectrum and structure of dicyandiamide, Trans. Faraday Soc. 1959, 55, 193, DOI: 10.1039/tf9595500193.
  • 30. Panicker C.Y., Varghese H.T., John A., Philip D., Nogueira H.I., Vibrational spectra of melamine diborate, C3N6H62H3BO3, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 1545-1551, DOI: 10.1016/S1386-1425(01)00608-4.
  • 31. Seifer G.B., Cyanuric acid and cyanurates, Russ. J. Coord. Chem. 2002, 28, 301-324, DOI: 10.1023/A:1015531315785.
  • 32. Larkin P., Makowski M., Colthup N., Flood L., Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes, Vib. Spectrosc. 1998, 17, 53-72, DOI: 10.1016/S0924-2031(98)00015-0.
  • 33. Sangeetha V., Kanagathara N., Sumathi R., Sivakumar N., Anbalagan G., Spectral and thermal degradation of melamine cyanurate, J. Mater. 2013, 2013, 262094, DOI: 10.1155/2013/262094.
  • 34. Chen Y., Wang Q., Reaction of melamine phosphate with pentaerythritol and its products for flame retardation of polypropylene, Polym. Adv. Technol. 2007, 18, 587-600, DOI: 10.1002/pat.845.
  • 35. Riccio A., Delamination in the context of composite structural design, in: Delamination Behav. Compos., Elsevier, 2008, 28-64, DOI: 10.1533/9781845694821.1.28.
  • 36. Srinivasa V., Shivakumar V., Nayaka V., Jagadeeshaiaih S., Seethram M., Shenoy R., Nafidi A., Fracture morphology of carbon fiber reinforced plastic composite laminates, Mater. Res. 2010, 13, 417-424, DOI: 10.1590/S1516-14392010000300022.
  • 37. Pogany G.A., The α relaxation in epoxy resins, Eur. Polym. J. 1970, 6, 343-353, DOI: 10.1016/0014-3057(70)90167-9.
  • 38. Zulfli N.H.M., Bakar A.A., Chow W.S., Mechanical and thermal properties improvement of nano calcium carbonatefilled epoxy/glass fiber composite laminates, High Perform. Polym. 2014, 26, 223-229, DOI: 10.1177/09540083 13507961.
  • 39. Huo S., Liu Z., Li C., Wang X., Cai H., Wang J., Synthesis of a phosphaphenanthrene/benzimidazole-based curing agent and its application in flame-retardant epoxy resin, Polym. Degrad. Stab. 2019, 163, 100-109, DOI: 10.1016/j.polymdegradstab.2019.03.003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-092f877d-96bf-431e-abdc-038cfdec1f6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.