PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grey Wolf optimization based breast cancer detection using 1D Convolution LSTM classifier

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykrywanie raka piersi w oparciu o optymalizację Gray Wolf przy użyciu klasyfikatora 1D Convolution LSTM
Języki publikacji
EN
Abstrakty
EN
Women are particularly vulnerable to breast cancer. Breast cancer diagnosis has benefited greatly from the utilization of ultrasound imaging. Breast UltraSound (BUS) image segmentation remains a difficult challenge due to low image quality. Furthermore, BUS image segmentation, as well as classification, is an important stage in the analysis process. Initially, the image associated with breast cancer is gathered from MIAS database. The gathered image undergoes pre-processing operation using the adaptive median filtering technique. Subsequently, the segmentation is performed in the pre-processed images using the hybrid method consisting of GMM and K-Means. These segmented images undergo the feature extraction steps further where the features are extracted by utilizing the Gray Level Co-occurrence Matrix (GLCM). Grey Wolf Optimization (GWO) selects the optimal features for further classification using a novel 1D Convolution LSTM. Here, the pooling layer of 1D CNN is replaced by the LSTM. The objective function behind the optimal feature selection and classification is the accuracy maximization. Finally, the novel One Dimensional Convolution Long Short Term Memory (1 DCLSTM) classifies the outcome into normal, benign, and malignant, respectively. The proposed method is compared with the other state of art methods related to this research.
PL
Kobiety są szczególnie narażone na raka piersi. Diagnostyka raka piersi bardzo skorzystała na wykorzystaniu obrazowania ultrasonograficznego. Segmentacja obrazu UltraSound (BUS) piersi pozostaje trudnym wyzwaniem ze względu na niską jakość obrazu. Ponadto segmentacja obrazu BUS, a także klasyfikacja, jest ważnym etapem procesu analizy. Początkowo obraz związany z rakiem piersi pozyskiwany jest z bazy MIAS. Zgromadzony obraz jest poddawany wstępnemu przetwarzaniu przy użyciu techniki adaptacyjnego filtrowania medianowego. Następnie na wstępnie przetworzonych obrazach przeprowadzana jest segmentacja metodą hybrydową składającą się z GMM i K-Means. Te podzielone na segmenty obrazy przechodzą kolejne etapy ekstrakcji cech, w których cechy są wyodrębniane przy użyciu macierzy współwystępowania poziomu szarości (GLCM). Optymalizacja Gray Wolf (GWO) wybiera optymalne funkcje do dalszej klasyfikacji przy użyciu nowatorskiego rozwiązania 1D Convolution LSTM. W tym przypadku warstwa łączenia 1D CNN zostaje zastąpiona przez LSTM. Funkcją celu stojącą za optymalnym doborem i klasyfikacją cech jest maksymalizacja dokładności. Wreszcie, powieść jednowymiarowa pamięć krótkoterminowa z konwolucją jednowymiarową (1 DCLSTM) klasyfikuje wynik odpowiednio na normalny, łagodny i złośliwy. Proponowana metoda jest porównywana z innymi nowoczesnymi metodami związanymi z tymi badaniami.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Department of Computer Science & IT, Sri Jayendra Saraswathy Maha Vidyalaya College of Arts and Science, Coimbatore, India
autor
  • Department of Computer Science & IT, Sri Jayendra Saraswathy Maha Vidyalaya College of Arts and Science, Coimbatore, India
Bibliografia
  • [1] Chen J., Jiao J., He S., Han G., Qin J., Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking, IEEE/ACM Transactions on Computational Biology and Bioinformatics, (2021), No.5, 1914-1923.
  • [2] Murat Dundar, Sunil Badve, Gokhan Bilgin, Computerized classification of intraductal breast lesions using histopathological images, IEEE Transactions on Biomedical Engineering, 58 (2011), 1977-1984.
  • [3] Yongjin Zhou, Jingxu Xu, Qiegen Liu, Cheng Li, Zaiyi Liu, Meiyun Wang, Hairong Zheng, Shanshan Wang, A Radiomics Approach With CNN for Shear-Wave Elastography Breast Tumor Classification, IEEE Transactions on Biomedical Engineering, 65 (2018), No. 9, 1935-1942.
  • [4] Saha M., Chakraborty C., Her2Net: A Deep Framework for Semantic Segmentation and Classification of Cell Membranes and Nuclei in Breast Cancer Evaluation, IEEE Transactions on Image Processing, 27(2018), No. 5, 2189-2200.
  • [5] Ashraf A B., Gavenonis S C., Daye D., Mies C., Rosen M A., Kontos D., A Multichannel Markov Random Field Framework for Tumor Segmentation With an Application to Classification ofGene Expression-Based Breast Cancer Recurrence Risk, IEEE Transactions on Medical Imaging, 32(2013), No. 4, 637-648.
  • [6] Qinghua Huang, Yonghao Huang, Yaozhong Luo, Feiniu Yuan, Xuelong Li, Segmentation of breast ultrasound image with semantic classification of superpixels, Medical Image Analysis, 61(2020) 1-31.
  • [7] Yue Zhou, Houjin Chen, Yanfeng Li, Qin Liu, Xuanang Xu, Shu Wang, Dinggang Shen, Pew-Thian Yap, Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images, Medical Image Analysis, 70(2021), 1-12.
  • [8] Pin Wang, Xianling Hu, Yongming Li, Qianqian Liu, Xinjian Zhu, Automatic cell nuclei segmentation and classification of breast cancer histopathology images, Signal Processing, 122(2016), 1-13.
  • [9] Aymen Mouelhi, Hana Rmili, Jaouher Ben Ali, Mounir Sayadi, Raoudha Doghri, Karima Mrad, Fast unsupervised nuclear segmentation and classification scheme for automatic all red cancer scoring in immunohistochemical breast tissue images, Computer Methods and Programs in Biomedicine, 165(2018), 37-51.
  • [10] Khaoula Belhaj Soulami, Naima Kaabouch, Mohamed Nabil Saidi, Ahmed Tamtaoui, Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using UNet model based-semantic segmentation, Biomedical Signal Processing and Control, 66(2020), 1-12.
  • [11] Rozai J., Borderline epithelial lesions of the breast, The American Journal of Surgical Pathology, 15(1991), No. 3, pp. 209–221, 1991.
  • [12] W. A. Berg et al., Detection of breast cancer with addition ofannual screening ultrasound or a single screening mri to mammography in women with elevated breast cancer risk, The Journal of the American Medical Association, 307(2012), No. 13, 1394–1404.
  • [13] Fitzgibbons P. L., Page D. L., Weaver D., Thor A. D., Allred D. C., Clark G. M., Ruby S. G., Malley F. O, Simpson J. F., Connolly J. L., Hayes D. F., Edge S. B., Lichter A., Schnitt S. J, Prognostic factors in breast cancer, Archives of Pathology & Laboratory Medicine Pathol, 124(2000), No. 7, 966–978.
  • [14] Woo Kyung Moon, Chiun Sheng Huang, Wei Chih Shen, Etsuo Takada, Analysis of elastographic and b-mode features at sonoelastography for breast tumor classification, Ultrasoundin Medicine & Biology, 11(2009), No.35, 1794-802.
  • [15] D. M. Regner et al., “Breast lesions: Evaluation with us strain imagingcclinical experience of multiple observers,” Radiology, vol. 238, no. 2, p. 425, 2006.
  • [16] Jin Chung , Won Kyung Lee, Eun-Suk Cha, Jee Eun Lee, Jeoung Hyun Kim, Young Hoon Ryu, Shear-wave elastography for the differential diagnosis of breast papillary lesions. Plos One, 11(2016), No.11, 1-11.
  • [17] Seokmin Han, Ho-Kyung Kang, Ja-Yeon Jeong, Moon-Ho Park, A deep learning framework for supporting the classification of breast lesions in ultrasound images, Physics in Medicine & Biology, 19(2017) No.62.
  • [18] Su Hyun Lee, Woo Kyung Moon, Nariya Cho, Jung Min Chang, Hyeong-Gon Moon, Wonshik Han, Dong-Young Noh, Jung Chan Lee, Hee Chan Kim, Kyoung-Bun Lee, In-Ae Park, Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics.” Investigative Radiology, 3(2014), No.49, 147-55.
  • [19] Woo Kyung Moon, Shao Chien Chang, Chiun Sheng Huang, Ruey Feng Chang, Breast tumor classification using fuzzy clustering for breast elastography, Ultrasound in Medicine & Biology, 37 (2011), No. 5, 700–708.
  • [20] Jung Hyun Yoon, Myung Hyun Kim, Eun-Kyung Kim, Hee Jung Moon, Jin Young Kwak, Min Jung Kim, Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions, Ajr American Journal of Roentgenology, 3(2011), No.196, 730-736.
  • [21] Qi Zhang, Yang Xiao, Shuai Chen, Congzhi Wang, Hairong Zheng, Quantification of elastic heterogeneity using contourletbased texture analysis in shear-wave elastography for breast tumor classification.” Ultrasound in Medicine & Biology, 2(1015), No.41, 588–600.
  • [22] Woo KyungMoon, Yao-SianHuan, Yan-WeiLee, Shao-ChienChang, Chung-MingLo, Min-ChunYang, Min SunBae, Su HyunLee, Jung MinChang, Chiun Sheng Huang, Yi-TingLin,Ruey Feng Chang, Computer-aided tumor diagnosis using shear wave breast elastography,” Ultrasonics, (2017), No.78, 125-133.
  • [23] Qi Zhang, Yang Xia, Jingfeng Suo, Jun Shi, Jinhua Yu, Yi Guo, Yuanyuan Wang, Hairong Zheng, Sonoelastomics for breast tumor classification: A radiomics approach with clustering-based feature selection on sonoelastography,” Ultrasound in Medicine & Biology, 5(2017), No.43, no. 5, p. 1058-1069.
  • [24] Qi Zhang, Yang Xiao, Wei Dag, Jingfeng Suo, Congzhi Wang, Jun Shi, Hairong Zheng, Deep learning based classification of breast tumors with shear-wave elastography, Ultrasonics, (2016), No. 72, 150–157.
  • [25] Krouskop T.A., Wheeler T.M.,Kallel F., Garra B.S., Hall T., Elastic moduli of breast and prostate tissues under compression, Ultrasonic Imaging, 4(1998), No. 20, 260 -274.
  • [26] Y. Zhao, D. Li, Z. Li, Performance enhancement and analysis of an adaptive median filter, International Conference on Communications and Networking, (2007), 651-653.
  • [27] Xinxin Xie, Wenzhun Huang, Harry Haoxiang Wang, and Zhe Liu, Image De-noising Algorithm based on Gaussian Mixture Model and Adaptive Threshold Modeling, Proceedings of the International Conference on Inventive Computing and Informatics (ICICI 2017) IEEE Xplore Compliant, (2017).
  • [28] Benilda Eleonor V. Commendador, Darwin Joseph L. Dela Cruz, Nathaniel C. Mercado, Ria A. Sagum, Diana C. Santiago, Sharlaine Grace C. Tagnines, Dialogue Transcription using Gaussian Mixture Model in Speaker Diarization, International Proceedings of Economics Development and Research, 1(2013), No.63, 1-5.
  • [29] Shreya Banerjee, Ankit Choudhary, Somnath Pal, Empirical Evaluation of K-Means, Bisecting KMeans, Fuzzy C-Means and Genetic K-Means Clustering Algorithms, 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), December 2015.
  • [30] Jain A., Data clustering: 50 years beyond k-means, Pattern Recognition letters, 8(2010), No. 31, 651-666.
  • [31] J. B. MacQueen, Some methods for classification and analysis of multivariate observations, In Proceedings of 5th Berkley Symposium on Mathematical Statistics and Probability, Vol. I: Statistics, (1967), 281–297.
  • [32] Than Than Htay, Su Su Maung and Khine Thin Zar, Analysis on Results Comparison of Feature Extraction Methods for Breast Cancer Classification, International Journal of Advancesin Scientific Research and Engineering (ijasre), 6(2020), No. 3, 95-102.
  • [33] Vijay Kumar, Priyanka Gupta, Importance of statistical measures in digital image processing, International Journal of Emerging Technology and Advanced Engineering, 8(2012), No.2, 56-62.
  • [34] Haralick R.M., Shanmugam K., Dinstein I., Textural features for image classification, IEEE Transactions on Systems, Man and Cybernetics, (1973), No.3, 610-621.
  • [35] Cheng H.D., Shan J., Ju W., Guo Y., Zhang L., Automated breast cancer detection and classification using ultrasound images: A survey, Pattern recognition, 1(2010), No.43, 299-317.
  • [36] Mitiche, Imene; Nesbitt, Alan; Conner, Stephen; Boreham, Philip; Morison, Gordon, 1D-CNN based real-time fault detection system for power asset diagnostics, IET Generation, Transmission & Distribution, 24(2020), No.14, 5766-5773.
  • [37] Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J., 1d-cnns for structural damage detection: Verification on a structural health monitoring benchmark data, Neurocomputing, (2018), No.275, 1308-1317.
  • [38] Woon, W.L., Aung, Z., El.Hag, A, Intelligent monitoring of transformer insulation using convolutional neural networks, 6thData Analytics for Renewable Energy Integration. Technologies, Systems and Society (DARE), Dublin, Ireland, (2018), 127-136.
  • [39] Nair, V., E. Hinton, G., Rectified linear units improve restricted boltzmann machines, 27th International Conference on Machine Learning (ICML), Haifa, Israel, (2010), 807–814.
  • [40] Ioffe, S., Szegedy, C., Batch normalization: accelerating deepnetwork training by reducing internal covariate shift, 32nd International Conference on Machine Learning (ICML), Lille, France, (2015), 448–456.
  • [41] Has¸im Sak, Andrew Senior, Franc¸oise Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling, (2014), 1-5.
  • [42] Gers F.A., Schmidhuber J., Cummins F., Learning to forget: Continual prediction with LSTM, Neural Computation, 10(2000), No.12, 2451-2471.
  • [43] Gers F.A., Schraudolph N.N., Schmidhuber J., Learning precise timing with LSTM recurrent networks, Journal of Machine Learning Research, (2003), No.3, 115-143.
  • [44] Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis, Grey Wolf Optimizer, Advances in Engineering Software, (2014), No.69, 46-61.
  • [45] Pedersen M.E.H., Chipperfield A.J., Simplifying Particle Swarm Optimization, Applied Soft Computing, 2(2010), No.2, 618-628.
  • [46] Seyedali Mirjalili, Andrew Lewis, The Whale Optimization Algorithm, Advances in Engineering Software, (2016), No.95, 51-67.
  • [47] John Mc Call, Genetic algorithms for modelling and optimisation, Journal of Computational and Applied Mathematics, 1(2005), No.184, 205-222.
  • [48] Karaboga D., Basturk B., On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing, 1(2008), No.8, 687-697.
  • [49] Jayaseelan, Samuel Manoharan, Gopal, Sakthivel Thirumalai, Muthu Sangeetha, Selvaraju, Sivamani, Patel, Saad, A Hybrid Fuzzy based Cross Neighbor Filtering (HF-CNF) for Image Enhancement of fine and coarse powder Scanned Electron Microscopy (SEM) images, 6(2022), No.42, 6159-6169.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09278e83-259c-4aea-a16e-ab9041fe44c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.