PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of MBE-grown GaSb buffer on GaAs substrates for infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to improve the quality of the GaSb buffer layers on GaAs substrates using the molecular beam epitaxy (MBE) technology. The high quality of the GaSb buffer layers is one of the most important elements enabling the synthesis of good quality of type- II superlattices (T2SL) structures for infrared applications. The main challenges in this regard are: compensation of the difference in lattice constants between GaAs and GaSb and obtaining the highest achievable surface quality of the final GaSb layer. In the literature, many authors describe different techniques to obtain the best quality of a GaSb buffer layer. In this work, we present the results of HRXRD, AFM, TOF-SIMS, SEM, and Nomarski optical microscope measurements obtained for 2 μm thick GaSb buffer layers. The GaSb layers are made according to different techniques and these results are compared with a GaSb buffer construction technique according to our own technology. During the processes, we also obtained an unintentional structure of one of the buffer layers, which allowed us to obtain very good results in terms of surface structure and crystallographic quality where FWHM in 𝜔𝑅𝐶 scan was equal to 138 arcsec and RMS 0.20 nm proving that there is still a lot of work to be done in this area.
Rocznik
Strony
art. no. e152620
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszow, al. Rejtana 16, 35-959 Rzeszow, Poland
Bibliografia
  • [1] Razeghi, M. et al. State-of-the-art type II antimonidebased superlattice photodiodes for infrared detection and imaging. Proc. SPIE 7467, 7467OT (2009). https://doi.org/10.1117/12.828421.
  • [2] Plis, E. A. InAs/GaSb Type-II Superlattice Detectors. Adv. Electron. (2014). https://doi.org/10.1155/2014/246769.
  • [3] Rogalski, A., Kopytko, M. & Martyniuk, P. InAs/GaSb type-II superlattice infrared detectors: three decades of development. Proc. SPIE 10177, 1017715 (2017). https://doi.org/10.1117/12.2272817.
  • [4] Wei, Y., Gin, A., Razeghi, M. & Brown, G. Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications. Appl. Phys. Lett. 80, 3262-3264 (2002). https://doi.org/10.1063/1.1476395.
  • [5] Hostut, M. & Ergun, Y. Quantum efficiency contributions for type-II InAs/GaSb SL photodetectors. Phys. E: Low-Dimens. Syst. Nanostructures 130, 114721 (2021). https://doi.org/10.1016/j.physe.2021.114721.
  • [6] Xiaochao, L. et al. Atomic intermixing and segregation at the interface of InAs/GaSb type II superlattices. Superlattices Microstruct. 104 (2017). https://doi.org/0.1016/j.spmi.2017.02.052.
  • [7] Jasik, A. et al. Comprehensive investigation of the interfacial misfit array formation in GaSb/GaAs material system. Appl. Phys. A 124, 512 (2018). https://doi.org/10.1007/s00339-018-1931-8.
  • [8] Jasik, A. et al. Atomically smooth interfaces of type-II InAs/GaSb superlattice on metamorphic GaSb buffer grown in 2D mode on GaAs substrate using MBE. Curr. Appl. Phys. 19, 120-127 (2019). https://doi.org/10.1016/j.cap.2018.11.017.
  • [9] Gutierrez, M., Araujo, D., Jurczak, P.,Wu, J.&Liu, H. Solid solution strengthening in GaSb/GaAs: A mode to reduce the TDdensity through Be-doping. Appl. Phys. Lett. 110, 092103 (2017). https://doi.org/10.1063/1.4977489.
  • [10] Hao, R. et al. Molecular beam epitaxy of GaSb on GaAs substrates with AlSb/GaSb compound buffer layers. Thin Solid Films 519, 228-230 (2010). https://doi.org/10.1016/j.tsf.2010.08.001.
  • [11] Plis, E. et al. Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate. Semicond. Sci. Technol. 25, 085010 (2010). https://doi.org/10.1088/0268-1242/25/8/085010.
  • [12] Delmas, M., Debnath, M., Liang, B.&Huffaker, D. Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors. Infrared Phys. Technol. 94, 286-290 (2018). https://doi.org/10.1016/j.infrared.2018.09.012.
  • [13] Koerperick, E., Murray, L., Norton, D., Boggess, T. & Prineas, J. Optimization of MBE-grown GaSb buffer layers and surface effects of antimony stabilization flux. J. Cryst. Growth 312, 185-191 (2010). https://doi.org/10.1016/j.jcrysgro.2009.10.033.
  • [14] Jasik, A. et al. MBE Growth of Type-II InAs/GaSb Superlattices on GaSb Buffer. In Crystal Growth: Theory, Mechanisms and Morphology, 293-327 (Nova Science Publishers, Incorporated, 2012).
  • [15] Lee, W. et al. Molecular beam epitaxy of GaSb layers on GaAs (001) substrates by using three-step ZnTe buffer layers. J. Cryst. Growth 305, 40-44 (2007). https://doi.org/10.1016/j.jcrysgro.2007.04.015.
  • [16] Jarosz, D. et al. Initial optimization of the growth conditions of GaAs homo-epitaxial layers after cleaning and restarting the molecular beam epitaxy reactor. ACS Omega 8, 32998–33005 (2023). https://doi.org/10.1021/acsomega.3c04777.
  • [17] Huang, S. H. et al. Strain relief by periodic misfit arrays for low defect density GaSb on GaAs. Appl. Phys. Lett. 88, 131911 (2006). https://doi.org/10.1063/1.2172742.
  • [18] Jarosz, D. et al. Method of producing GaSb layers on GaAs substrates (2023). P.443805, Polish Patent Application.
  • [19] Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40-45 (2016). https://doi.org/10.1515/oere-2016-0007.
  • [20] Jallipalli, A. et al. Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90° misfit dislocations. Nanoscale Res Lett. 4 (2009). https://doi.org/10.1007/s11671-009-9420-9.
  • [21] Li, Y. et al. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates. Appl. Surf. Sci. 258, 6571-6575 (2012). https://doi.org/10.1016/j.apsusc.2012.03.081.
  • [22] Araujo, D., Gonzalez, D., Garcia, R., Sacedon, A. & Calleja, E. Dislocation behavior in InGaAs step- and alternating step-graded structures: Design rules for buffer fabrication. Appl. Phys. Lett. 67, 3632-3634 (1995). https://doi.org/10.1063/1.115341.
  • [23] Gonzalez, D., Aragon, G., Araujo, D. & Garcia, R. Control of phase modulation in InGaAs epilayers. Appl. Phys. Lett. 76, 3236-3238 (2000). https://doi.org/10.1063/1.126592.
  • [24] Shang, X. Z. et al. Low temperature step-graded In-AlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy. J. Phys. D: Appl. Phys. 39, 1800 (2006). https://doi.org/10.1088/0022-3727/39/9/015.
Uwagi
This research was funded under projects no. POIR.04.01.04-00-0123/17 and no. SKN/SP/601031/2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09242909-37cd-416f-aee0-a0ff22fd7fef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.