PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie wód podziemnych na terenach górniczych z wykorzystaniem oprogramowania FEFLOW

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
FEFLOW groundwater modelling of mine sites
Języki publikacji
PL
Abstrakty
EN
Development of groundwater flow, and solute and heat transport models for underground and open-pit mining areas is a challenging and very complex issue. Despite the fact, models play an increasingly common role in mine water management. The aim of the paper is to present and illustrate theoretical aspects and practical strategies facilitating groundwater model set-up for mine sites by means of FEFLOW software. FEFLOW solved governing equations based on finite elements methods, which enables users to create models with very flexible meshing strategies including time-varying geometries. Unstructured and structured mesh generators allow creating very complex geological settings and with complex geometrical designs, as found for example in mine dewatering (open-cast geometry, inclined dewatering wells, inclined faults), or underground structures (pipes, tunnels, shafts etc.). In order to obtain reliable results and reduce uncertainty in provided forecast for mine sites, groundwater models often should be developed for transient condition and involve unsaturated flow and transport, fracture flow, density effects, chemical reactions, or time-varying behaviour of boundary conditions and material properties (such as conductivity or porosity). FEFLOW enables groundwater modeller set-up these all physical processes and via plug-ins extended functionality by integrated FEFLOW models with other models: geochemical (PHREEQC), watershed (MIKE 11, Hydro River) or develop user own plug-ins. Considering the above, FEFLOW seems to be appropriate software for accurate and reliable models developmentfor mine sites, and an interesting alternative for more widely used MODFLOW models in Poland.
Rocznik
Strony
1451--1459
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Wydział Nauk o Ziemi, Uniwersytet Śląski, ul. Będzińska 60, 41-200 Sosnowiec
Bibliografia
  • 1. ÁLVAREZ R., ORDÓÑEZ A., DE MIGUEL E., LOREDO C. 2016 - Prediction of the flooding of a mining reservoir in NW Spain. J. Environ. Manage., 184: 219-228.
  • 2. ANDRÉS C., ORDÓÑEZ A., ÁLVAREZ R. 2017 - Hydraulic and thermal modelling of an underground mining reservoir. Mine Water Environ., 36: 24-33.
  • 3. BEAR J. 1972 - Dynamics of Fluids in Porous Media. Am. Elsevier Publ. Co., New York.
  • 4. BERKOWITZ B. 2002 - Characterizing flow and transport in fractured geological media: Areview. Adv. Water Resources, 25 (8-12): 861-884.
  • 5. BUSSIERE B., CHAPUIS R.P., AUBERTIN M. 2003 - Unsaturated flow modelling for exposed and covered tailings dams. Conference material ICOLD, June 2003.
  • 6. DĄBROWSKI S., KAPUŚCIŃSKI J., NOWICKI K., PRZYBYŁEK J., SZCZEPAŃSKI A. 2010 - Metodyka modelowania matematycznego w badaniach i obliczeniach hydrogeologicznych. Poradnik metodyczny. Min. Środ., Warszawa. https://www.mos.gov.pl/g2/big/2011_05/5c4- 710160261e29afb356967872b3dcd.pdf.
  • 7. DERKOWSKA-SITARZ M., FISZER J. 2010 - Zastosowanie badań modelowych w rozpoznaniu warunków hydrogeologicznych dla obszaru LGOM. Pr. Nauk. Inst. Gór. P.Wroc., 131 (38): 25-34.
  • 8. DIERSCH H.-J. G. 2009 - Discrete feature modeling of flow, mass and heat transport processes by using FEFLOW, [W:] FEFLOW, Finite Element Subsurface Flow, Transport Simulation System. White Papers, 1: 151-198.
  • 9. DIERSCH H.-J.G. 2014 - FEFLOW, Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer, Heidelberg, Germany.
  • 10. DONG D., SUN W., XI S. 2012 - Optimization of mine drainage capacity using FEFLOW for the no. 14 coal seam of China’s Linnancang Coal Mine. Mine Water Environ., 31: 353-360.
  • 11. EATON T.T. 2006 - On the importance of geological heterogeneity for flow simulation. Sedimentary Geol., 184: 187-201.
  • 12. FEFLOW 7.0. 2015 - User Guide. https://www.mikepoweredbydhi.com/ download/product-documentation.
  • 13. HAŁADUS A., ZDECHLIK R., BUKOWSKI P., ŚWISTAK M. 2006 - Badania modelowe prognozowania procesu zatapiania na przykładzie ZG Janina. Prz. Gór., 7 (8): 57-68.
  • 14. JAKUBICK A.T., JENK U., KAHNT R. 2002 - Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigsteinmine, Germany. Environ. Geol., 42: 222-234.
  • 15. LEVENICK J.L., ZAWADZKI W., HAYNES A., MANRIQUE R. 2009 - Hydrogeological assessment of seepage through the Antamina tailings dam - Antamina copper/zinc mine, Peru, South America. Water Institute of Southern Africa, International Mine Water Association: Proceedings, International Mine Water Conference: 730-737.
  • 16. LUO J., DIERSCH H-J.G., MONNINKHOFF L.M.M. 2012 - 3D modeling of saline groundwater flow and transport in a flooded salt mine in Stassfurt, Germany. Mine Water Environ., 31: 104-111.
  • 17. MASSET O., POPPEI J., WISSMEIER L., WENDEROTH F. 2015 - Modeling of radionuclide transport in the overburden of a flooded salt mine. FEFLOW 2015, Conf. Material.
  • 18. MCDONALD M.G., HARBAUGH A.W. 1988 - MODFLOW, a modular three-dimensional finite difference ground-water flow model. US Geol. Surv., open-file rep.: 83-875.
  • 19. MONNINKHOFF B. 2014 - DHI-WASY Software IfmMIKE11 2.1 Coupling the groundwater model FEFLOW® and the surface water model MIKE11®, User Manual.
  • 20. NAIR R.N., SUNYF., CHOPRA M., PURANIK V.D. 2011 -Radiological impact assessment of the uranium tailings pond at Turamdih in India, [W:] Merkel B., Schipek M. (red.), The new uranium mining boom. Challenge and Lessons learned. Springer-Verlag, Berlin Heidelberg: 681-688.
  • 21. NIEDBALSKA K. 2013 - Ocena zmian warunków hydrogeologicznych podziemnych zakładów górniczych w GZW za pomocą modeli numerycznych. Biul. Państw. Inst. Geol., 456: 425-430.
  • 22. PICHEM 2016 - A FEFLOW Plugin for Advanced Geochemical Reaction, User Guide, DHI, Denmark, https://www.dhigroup.com/download/ mike-by-dhi-tools/groundwaterandporousmediatools.
  • 23. RAPANTOVAN., GRMELAA., VOJTEK D., HALIR J., MICHALEK B. 2007 - Ground water flow modelling applications in mining hydrogeology. Mine Water Environ., 26: 264-270.
  • 24. RENZ A., RŰHAAK W., SCHÄTZLP., DIERSCH H-J.G. 2009-Numerical modeling of geothermal use of mine water: challenges and examples. Mine Water Environ., 28: 2-14.
  • 25. RÓŻKOWSKI A. 2002 - Solanki Górnośląskiego Zagłębia Węglowego. Biul. Państw. Inst. Geol., 404: 191-214.
  • 26. SCHÄTZL P., CLAUSNITZER V., DIERSCH H.-J.G. 2008 - Groundwater modeling for mining and underground construction - challenges and Solutions, [W:] Rapantova N., Hrkal Z., Mine Water and the Environment, VSB - Technical University of Ostrava: 473-476.
  • 27. SI H. 2013 - A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator. User manual version 1.5. Tech. Rep. 13. Weierstrass Institute for Applied Analysis and Stochastics (WIAS), http://wias-berlin.de/software/tetgen/1.5/doc/manual/manual.pdf.
  • 28. SI H. 2015 - TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. on Mathematical Software, 41 (2).
  • 29. SINTON P., WINGLE B., BARTLETT D. 2015 - FEFLOW model of copper mine, Arizona, USA. FEFLOW 2015, conf. material.
  • 30. SITEK S., KOWALCZYK A., MAŁOLEPSZY Z. 2009 - Szczegółowy model struktury 3D zbiornika GZWP Gliwice nr 330. Biul. Państw. Inst. Geol., 436: 463-468.
  • 31. SITEK S. 2014 - Influence of natural factors and human activity on groundwater flow in Major Groundwater Basin (MGB) Gliwice, southern Poland. Pr. dokt., Arch. KHGI Wydz. Nauk o Ziemi U.Śl.
  • 32. STAŚKO S., WCISŁO M. 2006 - Ograniczenia metody różnic skończonych w dokumentowaniu zasobów oraz dróg przepływu w ośrodku szczelinowo-krasowym. Geologos, 10: 241-251.
  • 33. SZCZEPAŃSKI A. 2010 - Badania modelowe dla potrzeb projektowania i prowadzenia odwodnień budowlanych i kopalnianych, [W:] Dąbrowski S., Kapuściński J., Nowicki K., Przybyłek J., Szczepański A., Metodyka modelowania matematycznego w badaniach i obliczeniach hydrogeologicznych: poradnik. Wyd. Nauk. Bogucki, Poznań.
  • 34. SZCZEPIŃSKI J. 2013 - Modelowanie numeryczne w badaniach hydrogeologicznych dla oceny wpływu kopalń odkrywkowych na środowisko wodne. Wydz. Geoinżynierii Górnictwa i Geologii PWroc.
  • 35. WIENCŁAW E., KODA E. 2008 - Wykorzystanie modelowania do rozbudowy systemu odwodnienia w odkrywkowej kopalni węgla brunatnego. Biul. Państw. Inst. Geol., 431: 267-274.
  • 36. WINGLE W.L., SINTON P. 2015 - A Pit-Lake Module for FEFLOW. Conf. mat., http://www.aquageo.com/publications/2015/FEFLOW_Lake Module.paper.4.pdf.
  • 37. WISSMEIER L. 2015 - Simulating flow and transport with advanced geochemical reactions - Recent developments using PHREEQC as reaction engine. FEFLOW 2015, conf. mat.
  • 38. ZENG B., ZHANG Z., YANG M. 2017 - Risk assessment of groundwater with multi-source pollution by a long-term monitoring programme for a large mining area [w druku]. International Biodeterioration, Biodegradation, http://dx.doi.org/10.1016/j.ibiod.2017.01.002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-091a33f3-01f1-4c5d-a1b3-de3981c5aef9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.