PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Construction Properties of Hybrid Epoxy Composites Reinforced with Carbon Fiber and Alumina

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to investigate the impact of the introduction of powder modifier into composite reinforced with carbon fabric on selected mechanical properties. The tests were performed on 16 groups of hybrid epoxy composites, including one reference group and 15 groups containing alumina with the grain size of F220, F240, F280, F320 and F360, added in the weight percent of 5%, 10% and 15%. This composite was made of certified components designed for application in the aviation industry. Test results indicated that an increase of alumina content by weight caused a decrease of strength of polymer composites in most tests. In addition, the value of the force transferred by the composite in the tensile test increased disproportionately to the cross section, which resulted in decreased strength, while the addition of alumina impeded the super-saturation of the carbon fabric, which caused discontinuities in the matrix material.
Słowa kluczowe
Twórcy
  • Faculty of Aeronautics, Polish Air Force University, ul. Dywizjonu 303 25, 08-521 Dęblin, Poland
  • 31 Tactical Air Base in Krzesiny, Silniki 1, 61-325 Poznań, Krzesiny, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Faculty of Aeronautics, Polish Air Force University, ul. Dywizjonu 303 25, 08-521 Dęblin, Poland
  • Faculty of Aeronautics, Polish Air Force University, ul. Dywizjonu 303 25, 08-521 Dęblin, Poland
Bibliografia
  • 1. Asim M., Saba N., Jawaid M., Nasir M. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In: Sustainable composites for aerospace applications, Elsevier. 2018; 253–268. https://doi.org/10.1016/B978-0-08-102131-6.00012-8.
  • 2. Merkel K., Lenża J., Rydarowski H., Pawlak A., Wrzalik R. Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene). Journal of Materials Research. 2017; 32(2): 451–464. https://doi.org/10.1557/jmr.2016.471.
  • 3. Lenża J., Sozańska M., Rydarowski H. Methods for Limiting the Flammability of High-Density Polyethylene with Magnesium Hydroxide. in Reactions and Mechanisms in Thermal Analysis of Advanced Materials (eds.: Tiwari A., Raj B.) Scrivener Publishing LLC, Beverly, MA, USA. 2015; 1: 85–101.https://doi.org/10.1002/9781119117711.ch4.
  • 4. Regassa Y., Lemu H.G., Sirabizuh B. Trends of using polymer composite materials in additive manufacturing. IOP Conference Series: Materials Science and Engineering. 2019; 659: 012021. https://doi.org/10.1088/1757-899X/659/1/012021.
  • 5. Mrówka M., Jaszcz K., Skonieczna M. Anticancer activity of functional polysuccinates with N-acetyl-cysteine in side chains. European Journal of Pharmacology. 2020; 885: 173501. https://doi.org/10.1016/j.ejphar.2020.173501.
  • 6. Krzyzak A., Mazur M., Gajewski M., Drozd K., Komorek A., Przybyłek P. Sandwich structured composites for aeronautics: methods of manufacturing affecting some mechanical properties. Int. J. Aerosp. Eng. 2016; 1–10. https://doi.org/10.1155/2016/7816912.
  • 7. Mikhailova L., Voropaev V., Gorbatsevich G., Lauryniuk I. Technology of tribotechnical and sealing composite materials based on polytetrafluoroethylene. Min. Mech. Eng. Mach. Build. 2011; 4, 86–97.
  • 8. Owa A.F., Oladele I.O., Adediran A.A., Omotoyinbo J.A. Development of New Polymers from Thevetia peruviana Oil. International Journal of Engineering Research in Africa. 2020; 48: 9–23. https://doi.org/10.4028/www.scientific.net/jera.48.9
  • 9. Szczepaniak R., Rolecki K., Krzyzak A. The influence of the powder additive upon selected mechanical properties of a composite. IOP Conf. Ser. Mater. Sci. Eng. 2019; 634: 012007. https://doi.org/10.1088/1757-899X/634/1/012007
  • 10. Krzyzak A., Kosicka E., Szczepaniak R., Szymczak T. Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear. J. Achiev. Mater. Manuf. Eng. 2019; 95: 5–12. https://doi.org/10.5604 / 01.3001.0013.7619
  • 11. Mrówka M., Machoczek T., Jureczko T., Joszko K., Gzik M., Wolański W., Wilk K. Mechanical, chemical, and processing properties of specimens manufactured from poly-ether-ether-ketone (PEEK) using 3D printing. Materials. 2021; 14: 2717. https://doi.org/10.3390/ma14112717.
  • 12. Sławski S., Kaczmarczyk J., Szymiczek M. Numerical Studies on the Influence of a Reinforcing Material on the Energy Absorption in a Multilayered Composite during Impacts. Mech Compos Mater. 201; 57.
  • 13. Mrówka M., Woźniak A., Nowak J., Wróbel G., Sławski S. Determination of Mechanical and Tribological Properties of Silicone-Based Composites Filled with Manganese Waste. Materials. 2021;14(16): 4459. https://doi.org/10.3390/ma14164459.
  • 14. Sławski S., Szymiczek M., Kaczmarczyk J., Domin J., Świtoński E. Low Velocity Impact Response and Tensile Strength of Epoxy Composites with Different Reinforcing Materials. Materials. 2020; 13: 3059. https://doi.org/10.3390/ma13143059.
  • 15. Kosicka E., Borowiec M., Kowalczuk M., Krzyzak A., Szczepaniak R. Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites Used in the Aviation Industry. Materials. 2020; 13: 5479.
  • 16. Sarraj S., Szymiczek M., Machoczek T., Mrówka M. Evaluation of the Impact of Organic Fillers on Selected Properties of Organosilicon Polymer. Polymers. 2021; 13: 1103. https://doi.org/10.3390/polym13071103.
  • 17. Mrówka M., Woźniak A., Prężyna S., Sławski S. The influence of zinc waste filler on the tribological and mechanical properties of silicone-based composites. Polymers. 2021; 13: 585.https://doi.org/10.3390/polym13040585.
  • 18. Sławski S., Woźniak A., Bazan P., Mrówka M. The Mechanical and Tribological Properties of Epoxy Based Composites Filled with Manganese-Containing Waste. Materials. 2022; 15(4): 1579. https://doi.org/10.3390/ma15041579.
  • 19. Mrówka M., Machoczek T., Jureczko P., Szymiczek M., Skonieczna M., Marcoll Ł. Study of selected physical, chemical and biological properties of selected materials intended for contact with human body. Polish Journal of Chemical Technology. 2019; 21: 1–8. https://doi.org/10.2478/pjct-2019-0001.
  • 20. Saba N., Tahir P.M., Jawaid M. A Review on Potential of Nano Filler / Natural Fiber Polymer Composites Hybrid Composites. Polymers. 2014; 6: 2247–2273. https://doi.org/10.3390/polym6082247.
  • 21. Chomiak M. Reuse of polyester-glass laminate waste in polymer composites. Journal of Achievements in Materials and Manufacturing Engineering. 2021; 107(2): 49–58. https://doi.org/10.5604/01.3001.0015.3583.
  • 22. Soutis C. Introduction: Engineering requirements for aerospace composite materials. Polymer Composites in the Aerospace Industry. 2015; 1–18. https://doi.org/10.1016/B978-0-85709-523-7.00001-3.
  • 23. Calado E.A., Leite M., Silva A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design. Journal of Cleaner Production. 2018; 186: 113–122. https://doi.org/10. 1016/J.JCLEPRO.2018.02.048.
  • 24. Reddy B.M., Reddy R.M., Reddy B.C.M., Reddy P.V., Rao H.R., Reddy Y.M. The effect of granite powder on mechanical, structural and water absorption characteristics of alkali treated cordiadichotomafiber reinforced polyester composite. Polymer Testing. 2020; 91: 106782. https://doi.org/10.1016/j.polymertesting.2020.106782.
  • 25. Bhaskar K.B., Devaraju A., Paramasivam A. Experimental investigation of glass powder reinforced polymer composite. Materials Today: Proceedings. 2021; 39(1): 484–487. https://doi.org/10.1016/j.matpr.2020.08.211.
  • 26. Selvam R., Ravi S., Raja R. Fabrication of SiC particulate reinforced polyester matrix composite and investigation. IOP Conf. Ser.: Mater. Sci. Eng. 2017; 197: 012052. https://doi.org/10.1088/1757899X/197/1/012052.
  • 27. FEPA 42-2:2006. Microgrits F230~F2000 Specifications.; FEPA Standard: Courbevoie, France, 2006.
  • 28. Szala M., Szafran M., Macek W., Marchenko S., Hejwowski T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology Research Journal. 2019; 13(4): 151–161.
  • 29. Krzyzak A., Kosicka E., Szczepaniak R. Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites. Materials. 2020; 13, 5735. https://doi.org/10.3390/ma13245735.
  • 30. http://www.havel-composites.pl/files/doc/PL_system285_MGS_doc.doc.
  • 31. h t t p : / / w w w. h a v e l - composites.pl/index.php?menu=produkt&id=115.
  • 32. ISO 527-2:2012: Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics; International Organization for Standardization: Geneva, Switzerland, 2012.
  • 33. Polski Komitet Normalizacyjny. Kompozyty Tworzywowe Wzmocnione Włóknem—Oznaczanie Właściwości przy Zginaniu; PN-EN ISO 14125:2001; Polski Komitet Normalizacyjny: Warsaw, Poland, 2019.
  • 34. ISO 14130:1997: Fibre-reinforced plastic composites – Determination of apparent interlaminar shear strength by short-beam method; International Organization for Standardization: Geneva, Switzerland, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0918d5eb-de0a-4b5d-a1e9-bf5a8a1a4f45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.