Wpływ kształtu imperfekcji geometrycznych dźwigarów dachowych na siły w tężniku połaciowym poprzecznym

dr inż. **DARIUSZ CZEPIŻAK** Politechnika Wrocławska Wydział Budownictwa Lądowego i Wodnego, Katedra Konstrukcji Budowlanych **ORCID: 0000-0003-4185-5470**

(1)

Projektując stężenia połaciowe poprzeczne, zaleca się przyjmować zastępcze obciążenie od imperfekcji geometrycznych dźwigarów dachowych. Przedstawiona analiza ma na celu sprawdzenie, czy zmiana kształtu imperfekcji w modelu obliczeniowym może spowodować bardziej niekorzystne wytężenie stężenia w porównaniu do wytężeń wyznaczonych według Eurokodu 3.

Projektując stężenia połaciowe poprzeczne [1], zaleca się przyjmować obciążenia od imperfekcji geometrycznych q_d dźwigarów dachowych (rys. 1.) wyznaczone przy założeniu imperfekcji łukowej w kształcie paraboli o strzałce e₀ (rys. 1a), ze wzoru:

$$q_{d} = \sum_{i=1}^{m} N_{Ed,i} \, 8 \frac{e_{0} + \delta_{q}}{L^{2}}$$

w którym:

- N_{Ed,i} obliczeniowa siła ściskająca w i-tym elemencie stabilizowanym,
- m liczba stężanych elementów,
- e₀- strzałka zastępczej imperfekcji łukowej,
- δ_q ugięcie stężenia od oddziaływania q_d i wszystkich obciążeń zewnętrznych uzyskane z analizy pierwszego rzędu,
- L długość elementu stężanego.

Celem pracy jest sprawdzenie, czy zmiana kształtu imperfekcji w modelu obliczeniowym może spowodować bardziej niekorzystne wytężenie stężenia w porównaniu do wytężeń wyznaczonych wg [1].

Kształt analizowanych imperfekcji geometrycznych

Sfintesco [2] wykazał, że funkcja kształtu początkowej imperfekcji kształtownika może zmienić znak na długości elementu (deformacja w obu kierunkach). Niewiadomski [3] przedstawił pomierzone przemieszczenia pasów górnego i dolnego dźwigarów dachowych. Deformacje w jednym albo obu kierunkach znacznie przekraczały dopuszczalne

Rys. 1. Schemat do wyznaczania obciążeń imperfekcyjnych: a) element stężany, b) siła ściskająca, c) układ zastępczych obciążeń imperfekcyjnych

Norma [1] zaleca do obliczania obciążenia od imperfekcji w analizie stężeń dachowych przyjmowanie deformacji wstępnej elementu stężanego w kształcie paraboli o strzałce e_0 (krzywa $y_{0,1}(s)$, rys. 2.), opisanej równaniem:

$$y_{0,1}(s) = 4e_0s(1-s)$$

gdzie:

 s – współrzędna względna długości elementu, która przyjmuje wartości z zakresu (0;1).

(2)

Przy czym strzałka jednego elementu stężanego wynosi:

$$e_0 = L/500$$
 (3)

Strzałka e₀ jest identyczna jak przyjęta w [4] dopuszczalna odchyłka prostości pasów dźwigarów kratowych, a wystąpienie deformacji wstępnej elementu, zmieniającej znak na długości, nie jest wykluczone w świetle [4].

W pracy przeanalizowano, dla różnych kształtów wstępnych imperfekcji, rozkład zastępczego obciążenia q_d oraz sił w tężniku połaciowym będących rezultatem jego działania. Kształty analizowanych imperfekcji wstępnych pokazano na rys. 2. i opisano równaniami:

■ imperfekcja paraboliczna [1], wzór (2)

 imperfekcja odpowiadająca pierwszej postaci wyboczenia pręta ściskanego zamocowanego na obu końcach przegubowo

$$y_{0,2}(s) = e_0 sin(\pi s)$$
 (4)

■ imperfekcja opisana wielomianem o stycznych poziomych na końcu przedziałów

$$y_{0,3}(s) = 16e_0s^2(s-1)^2$$
(5)

 imperfekcja opisana funkcją trygonometryczną o stycznych poziomych na końcu przedziałów

$$y_{0,4}(s) = e_0[sin(\pi s)]^2$$

 losowo wybrana imperfekcja, opisana dwoma pierwszymi wyrazami sinusowego szeregu Fouriera, zmieniająca znak na długości elementu

$$y_{0,5}(s) = \frac{731}{2000} e_0[\sin(\pi s) - 2\sin(2\pi s)] (7)$$

Imperfekcje $y_{0,1}(s)$ i $y_{0,2}(s)$ oraz $y_{0,3}(s)$ i $y_{0,4}(s)$ są kształtem zbliżone do siebie. Taki dobór imperfekcji ma na celu sprawdzenie, czy niewielkie zmiany ich kształtu nie wpłyną znacząco na zmianę obciążenia q_{cr}

Zastępcze obciążenie imperfekcyjne

W celu wyznaczenia sił od imperfekcji w tężniku połaciowym posłużono się modelem zastępczych obciążeń imperfekcyjnych q_{d} (1) rekomendowanym w [1]. Opracowa-

Rys. 3. Schemat statyczny wstępnie wygiętego elementu ściskanego

no go dla elementów ściskanych siłą stałą na długości o parabolicznej imperfekcji wstępnej ze strzałką $e_{\rm n}$.

W analizach rozszerzono normowy model obliczania obciążenia q_d przyjmując zmodyfikowane, w stosunku do [1], założenia obliczeniowe:

1. Stężany pas dźwigara oraz stężenie traktuje się jako wyizolowane z konstrukcji odpowiednio pręt i kratownicę, które są połączone płatwiami [1].

2. Wstępne wygięcie stężanego pasa dźwigara w płaszczyźnie połaci dachu ma kształt paraboli o strzałce e_0 funkcja $y_{0,1}(s)$ (rys. 2.) [1] oraz dodatkowo kształty $y_{0,2}(s)$ oraz $y_{0,3}(s)$, $y_{0,4}(s)$, $y_{0,5}(s)$ wg rys. 2.

3. Stężany element jest obciążony stałą na długości siłą ściskającą [1].

Następnie wyprowadzono formuły do wyznaczania obciążenia q_d , które uwzględniają różne kształty imperfekcji. Rozwiązanie zagadnienia uzyskano przez porównanie momentów zginających w elemencie wstępnie wygiętym obciążonym siłami podłużnymi z belką prostą obciążoną poprzecznie zmiennym obciążeniem na jej długości (rys. 3.) [5].

W ogólnym przypadku [5] moment zginający w elemencie ściskanym ze wstępnym wygięciem jak na rys. 3. w przekroju oddalonym o x_0 od lewej podpory może być opisany równaniem:

$$M(x_0) = -\int_{x_0}^{L} n(x)[y(x_0) - y(x)] dx - \sum_{i}^{n} N_i[y(x_0) - y(x_i)] - R_{By}(L - x_0)$$
gdzie:
$$f \begin{bmatrix} L & n \\ 0 & 0 \end{bmatrix}$$
(8)

$$R_{By} = -R_{Ay} = \frac{1}{L} \left[\int_{0}^{L} n(x)y(x)dx + \sum_{i=1}^{n} N_{i}y(x_{i}) \right]$$
(9)

w którym:

(6)

n(x) – obciążenie podłużne rozłożone na części lub całości elementu,

N_i – skupione obciążenia podłużne elementu przyłożone w przekroju x_i,

i – numer skupionej siły osiowej. W równaniu (8) indeks *i* oznacza sumowanie sił skupionych przyłożonych do elementu w miejscach $x_1 \ge x_n$.

Poprzez różniczkowanie funkcji momentu zginającego otrzymano równania sił poprzecznych V(s) i zastępczych obciążeń od imperfekcji q(s):

$$V_{y0,1}(s) = \frac{N_{Ed}e_0}{L}4(1-2s)$$
(10)

$$q_{y0,1}(s) = 8 \frac{N_{Ed}e_0}{L^2} = const.$$
(11)

$$V_{y0,2}(s) = \frac{N_{Ed}e_0}{L}\pi cos(\pi s)$$
(12)

$$q_{y0,2}(s) = \frac{N_{Ed}e_0}{L^2}\pi^2 sin(\pi s)$$
(13)

$$V_{y0,3}(s) = \frac{N_{Ed}e_0}{L} 32s(1 - 3s + 2s^2)$$
(14)

$$q_{y0,3}(s) = \frac{N_{Ed}e_0}{L^2} 32(6s - 6s^2 - 1)$$
(15)

Rys. 4. Wykresy sił poprzecznych V(s) dla różnych krzywych imperfekcji

Rys. 5. Wykresy obciążeń od imperfekcji q(s) dla różnych krzywych imperfekcji

Rys. 6. Schemat przykładowego stężenia dachowego

$V_{y0,4}(s) = \frac{N_{Ed}e_0}{L}\pi sin(2\pi s)$	
$q_{y04}(s) = -\frac{N_{Ed}e_0}{2\pi^2} 2\pi^2 cos(2$	1

n 7

$$V_{y0,4}(s) = -\frac{L^2}{L^2} 2\pi^2 \cos(2\pi s)$$

 $N_{Ed}e_0 \ 731$

$$V_{y_{0,5}}(s) = \frac{N_{Ed} c_0}{L} \frac{731}{2000} \pi [\cos(\pi s) - 4\cos(2\pi s)]$$

$$q_{y0,5}(s) = \frac{N_{Ed}e_0}{L^2} \frac{731}{2000} \pi^2 [sin(\pi s) - 8sin(2\pi s)]$$
(19)

llustrację graficzną wyznaczonych funkcji pokazano na rys. 4. i 5.

W analizowanych przypadkach reakcje $R_{Ay} = R_{By} = 0$ (9). Obciążenie q(s), siły tnące na końcach przedziałów V(s) oraz reakcje R_{Ay} , R_{By} stanowią układ zastępczych obciążeń od imperfekcji (rys. 1c) przyjętych w [1]. Przypadki, w których reakcje przyjmują wartości różne od 0, są szczególne, gdyż wtedy siły te przekazują się z tężnika połaciowego na stężenie pionowe międzysłupowe ścian. Natomiast gdy reakcje R_{Ay} , R_{By} są równe 0, wtedy układ zastępczych obciążeń imperfekcyjnych q(s) oraz V(s=0), V(s=1) (rys. 1c) samorównoważy się w strefie stężenia oraz elementu stężanego i nie przekazuje się na stężenia ścian.

Analiza siły od imperfekcji

Przykładowy tężnik połaciowy poprzeczny (rys. 6.) za pomocą płatwi podpiera pas górny rygla dachowego o rozpiętości L = 24m, na którym opiera się 13 płatwi w rozstawie 2,0 m. Element stężany ściskany jest stałą siłą na długości N_{Ed} = 163,64 kN. Przeanalizowano 5 kształtów imperfekcji wstępnych (rys. 2.) o strzałce e₀.= L/500 = 48 mm Krzyżulce stężenia są prętami wiotkimi i nie przenoszą sił ściskających. Pozostałe pręty tężnika (słupki i pasy) są połączone w wezłach przegubowo. Siły w płatwiach wyznaczono na podstawie całkowania równań opisujących obciążenia od imperfekcji q(s) (11, 13, 15, 17, 19). Wyznaczając siły w płatwi nr 25 i 37, uwzględniono obciążenie q(s) i siły tnące V(s = 0), V(s = 1) wg (10, 12, 14, 16, 18) orazreakcje $R_{Ay} = R_{By} = 0$ (9).

Wyniki analiz przedstawiono w tabeli 1. W kol. 1 podano numery prętów tężnika (rys. 6.). W kol. od 2 do 6 podano siły wewnętrzne dla analizowanych krzywych imperfekcji wstępnych. Znak (–) oznacza, że element jest rozciągany. Przy czym jeśli zmieni się kierunek strzałki, imperfekcji ulegają także znaki sił w płatwiach.

Podsumowanie

(16)

(17)

(18)

Przeprowadzone na przykładzie analizy (tab. 1.) pozwoliły zaobserwować następujące prawidłowości:

1) Największą wartość siły w płatwiach uzyskano dla pręta nr 37 ($N_{37} = -1,825$ kN), imperfekcja (kol. 6). Wartość ta jest o 52% większa od maksymalnej siły w płatwi wg [1] (pręty 25 i 37, kol. 2).

2) Największą wartość siły w krzyżulcu uzyskano dla pręta nr 24 ($N_{24} = -1,923$ kN), imperfekcja (kol. 6). Wartość ta jest 52%

większa od maksymalnej siły w krzyżulcu wg [1] (pręty 1 i 24, kol. 2).

 Porównując siły w prętach dla różnych kształtów imperfekcji (kol. od 2 do 6), wyka-

zano wzrost sił w płatwiach o 289% (pręt nr

34, kol. 6), a w krzyżulcach o 1276% (pręt nr 11, kol. 6) w stosunku do sił wyznaczonych wg [1] (kol. 2).

4) Analizując stosunek sił w prętach stężenia podanych w kol. 3 i 2, stwierdzono, że imperfekcja sinusoidalna (4) daje mniejsze o 15% wartości sił w stosunku do [1] w prętach strefy podporowej, natomiast większe o 23% w strefie środkowej tężnika.

5) Z porównania sił wewnętrznych z kol. 4 i 5 w stosunku do [1] (kol. 2) wynika, że są one mniejsze w prętach strefy podporowej, ale większe o 144% w prętach strefy środkowej nr 11, 14, 31.

Podsumowując, należy stwierdzić, że przyjęty w [1] model oceny obciążenia q_d oparty o imperfekcję paraboliczną może znacznie zaniżać siły wewnętrzne w prętach stężenia. Jest on szczególnie nieodpowiedni w sytuacji, gdy imperfekcja będzie zmieniać znak na długości elementu stężanego. Ponadto w przypadku gdy imperfekcje nie zmieniają znaku i mają ksztatt wpisujący się w parabolę (2), model normowy również zaniża wytężenie prętów w strefie środkowej tężnika.

Literatura

[1] PN-EN 1993-1-1:2006 Eurokod 3: Projektowanie konstrukcji stalowych. Część 1-1: Reguły ogólne i reguły dla budynków.

[2] Sfintesco D., 1970, Fondement experimental des courbes Europeennes de flambement (in French). Journal of Construction Métallique, No. 3, p. 5 12.

[3] Niewiadomski L., 2006, Wplyw nadmiernych imperfekcji geometrycznych na nośność stalowych dźwigarów dachowych budowanej hali, "Inżynieria i Budownictwo" nr 5, str. 242-244.

[4] PN-EN 1090-2+A1:2012, Wykonanie konstrukcji stalowych i aluminiowych. Część 2: Wymagania techniczne dotyczące konstrukcji stalowych.

[5] Biegus A., Czepiżak D., 2018, Generalized model of imperfection forces for design of trans-verse roof bracings and purlins, Archives of Civil and Mechanical Engineering, vol. 18, no. 1, DOI: 10.1016/j.acme.2017.07.002.

DOI: 10.560<u>4/01.3001.0013.8784</u>

PRAWIDŁOWY SPOSÓB CYTOWANIA

Czepiżak Dariusz, 2020, Wpływ kształtu imperfekcji geometrycznych dźwigarów dachowych na siły w tężniku połaciowym poprzecznym "Builder" 04 (273). DOI: 10.5604/01.3001.0013.8784

Streszczenie: Projektując stężenia połaciowe poprzeczne [1], zaleca się przyjmować zastępcze obciążenie od imperfekcji geometrycznych dźwigarów dachowych. Obciążenie to można bezpiecznie oszacować [1] przy założeniu stałej na długości elementu stabilizowanego siły ściskającej i imperfekcji w kształcie paraboli o strzałce e₀. W pracy, dla różnych kształtów imperfekcji geometrycznych elementów stabilizowanych, wyznaczono obciążenia imperfekcyjne oraz siły w prętach tężnika połaciowego i porównano je z siłami wyznaczonymi wg [1]. Wyniki analiz przedstawiono w tabeli i sformułowano syntetyczne wnioski.

Słowa kluczowe: konstrukcje stalowe, stężenia dachowe, imperfekcje geometryczne

Abstract: Influence of girder deformation shape on forces in the roof bracing system

Tabela 1	. Siły wewnętrze	w płatwiach	i stężeniu od	d imperfekcji	geometrycznych	[kN]
		•				

Nr pręta	$y_{0,1}(s)$	$y_{0,2}(s)$	$y_{0,3}(s)$	$\mathcal{Y}_{0,4}(s)$	$y_{0,5}(s)$				
1	2	3	4	5	6				
Siły w krzyżulcach									
1	-1,264	-1,073	-0,404	-0,280	0				
2	0	0	0	0	-1,138				
3	-1,034	-1,000	-0,906	-0,766	0				
4	0	0	0	0	-0,755				
5	-0,804	-0,859	-1,062	-1,047	0				
6	0	0	0	0	-0,096				
7	-0,574	-0,659	-0,950	-1,047	-0,651				
8	0	0	0	0	0				
9	-0,345	-0,414	-0,647	-0,766	-1,272				
10	0	0	0	0	0				
11	-0,115	-0,141	-0,228	-0,280	-1,582				
12	0	0	0	0	0				
13	0	0	0	0	-1,479				
14	-0,115	-0,141	-0,228	-0,280	0				
15	0	0	0	0	-0,969				
16	-0,345	-0,414	-0,647	-0,766	0				
17	0	0	0	0	-0,169				
18	-0,574	-0,659	-0,950	-1,047	0				
19	0	0	0	0	0				
20	-0,804	-0,859	-1,062	-1,047	-0,724				
21	0	0	0	0	0				
22	-1,034	-1,000	-0,906	-0,766	-1,486				
23	0	0	0	0	0				
24	-1,264	-1,073	-0,404	-0,280	-1,923				
		-	Siły w płatwiach						
25	-1,200	-1,019	-0,383	-0,266	1,079				
26	0,218	0,069	-0,476	-0,461	-0,364				
27	0,218	0,134	-0,148	-0,266	-0,625				
28	0,218	0,190	0,106	0	-0,709				
29	0,218	0,232	0,288	0,266	-0,589				
30	0,218	0,259	0,397	0,461	-0,294				
31	0,218	0,268	0,433	0,532	0,098				
32	0,218	0,259	0,397	0,461	0,484				
33	0,218	0,232	0,288	0,266	0,759				
34	0,218	0,190	0,106	0	0,847				
35	0,218	0,134	-0,148	-0,266	0,723				
36	0,218	0,069	-0,476	-0,461	0,414				
37	-1,200	-1,019	-0,383	-0,266	-1,825				
Oznaczer	nia: (–) rozciąganie								

During designing transverse roof bracing, [1] recommends taking into account equivalent stabilizing load from geometrical imperfections of roof girders. This load can be safely estimated [1] assuming a constant compression force along the length of the stabilized element and initial parabolic imperfection with maximum amplitude e_0 . In the paper, for different shapes of geometrical imperfections of

stabilized elements, imperfect loads and forces in the roof bracing were determined and compared with the forces determined according to [1]. The results of the analyzes are presented in the table and synthetic conclusions were formulated.

Keywords: steel structures, roof bracings, geometrical imperfections