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INTRODUCTION

Global climate change has increasingly ex-
acerbated the frequency and intensity of drought 
events, profoundly affecting agricultural produc-
tivity and ecosystem stability worldwide. These 
impacts are particularly pronounced in savanna 
ecosystems, where prolonged periods of water 
scarcity can lead to significant vegetation stress 
and soil degradation. Monitoring these drought 
dynamics is crucial for developing effective miti-
gation and adaptation strategies. This research 

focuses on the Bali savanna ecosystems, employ-
ing the vegetation health index (VHI) derived 
from Landsat 8 OLI/TIRS imagery to track and 
analyze extreme agricultural drought under the 
influences of climate change from 2013 to 2022.

The environmental issues in the study area 
are relatively complex, with previous research 
primarily focusing on agricultural soil science 
through field observations and laboratory analy-
ses. These studies have covered topics such as 
soil erosion mapping (Trigunasih and Saifulloh, 
2023), landslides (Diara et al., 2022, 2023), soil 
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fertility levels (Bhayunagiri and Saifulloh 2022; 
Trigunasih et al., 2023), land degradation (Kar-
tini et al., 2023), flood overflow in the water-
shed (Suyarto et al., 2023) and the use of remote 
sensing data to monitor the effects of volcanic 
eruptions (Trigunasih et al., 2023a), as well as 
environmental monitoring and their relation to 
climate variability (Adnyana et al., 2024; Sunarta 
and Saifulloh, 2022a, 2022b). Previous research-
ers have noted that the study area is relatively 
arid and barren, attributed to the annual increase 
in land surface temperatures. This region even ex-
hibits the highest temperature spots on a regional 
scale within Bali (Sunarta et al., 2022). This re-
search gap underscores the need to investigate 
land drought using land surface temperature data 
and vegetation indices from remote sensing satel-
lites. Addressing this gap will enhance the data-
base and provide new insights into environmental 
monitoring and disaster mitigation. By leverag-
ing remote sensing technology, this study aims to 
contribute to a deeper understanding of drought 
dynamics, which is crucial for developing future 
mitigation strategies.

The use of remote sensing data is relatively 
effective, efficient, cost-effective, and requires 
minimal effort for environmental monitoring and 
drought disaster monitoring. Remote sensing tech-
nology, particularly the operational land imager 
(OLI) and thermal infrared sensor (TIRS) aboard 
the Landsat satellite series (Ridwan et al., 2018; 
Wulder et al., 2019; Xu, 2015), has revolution-
ized our ability to monitor and analyze environ-
mental phenomena, with a specific focus on veg-
etation health and drought dynamics (Guha et al., 
2018; Sekertekin and Bonafoni, 2020). Numer-
ous studies published in esteemed journals have 
consistently highlighted the efficacy and utility of 
Landsat OLI/TIRS data, providing invaluable in-
sights into the nuanced inter-annual variations of 
drought-affected ecosystems and their dynamics 
within unique landscapes (Ejaz et al., 2023).

The Landsat program, a collaborative en-
deavor between NASA and the USGS initiated in 
the 1970s, has been pivotal in delivering high-fi-
delity Earth observation data to researchers glob-
ally. With the introduction of landsat 8 in 2013, 
equipped with advanced OLI and TIRS sen-
sors, our capacity for vegetation monitoring and 
drought assessment has reached unprecedented 
levels (Hemati et al., 2021; Ridwan et al., 2018). 
The OLI sensor, renowned for its enhanced spatial 
resolution, facilitates the capture of multispectral 

imagery, enabling meticulous analysis of vegeta-
tion properties and health indicators (Ke et al., 
2015; Masek et al., 2020). Conversely, the TIRS 
sensor, specializing in thermal infrared radiation 
measurement, provides vital information on land 
surface temperatures (Barsi et al., 2014), a criti-
cal indicator of vegetation stress and prevailing 
drought conditions (Nugraha et al., 2019) within 
complex savanna ecosystems.

The effectiveness of Landsat OLI/TIRS data 
in vegetation drought mapping has been demon-
strated by various researchers, as noted by Ejaz et 
al. (2023). By integrating spectral indices derived 
from OLI bands and thermal data from TIRS, re-
searchers have achieved precise assessments of 
vegetation health and identification of drought-af-
fected regions. This holistic approach to drought 
monitoring, combining multispectral and thermal 
data, is particularly significant in regions prone 
to water stress, such as the savanna areas of Bali. 
Furthermore, research by Dzakiyah et al. (2022) 
and Sari et al. (2021) has highlighted the poten-
tial of Landsat OLI/TIRS imagery in the early 
detection of drought-induced vegetation stress. 
Through detailed time-series analysis, temporal 
patterns of vegetation response to drought events 
have been revealed, empowering stakeholders 
with timely insights for effective mitigation and 
adaptive management strategies.

Building on these foundational findings, this 
research aims to harness remote sensing technol-
ogy, specifically leveraging Landsat 8 imagery, 
to unravel the complex inter-annual dynamics of 
drought across the Bali Savanna ecosystem. Em-
ploying rigorous quantitative analysis techniques 
from 2013 to 2022 and guided by established 
methodologies (Kogan, 2001), the study seeks 
to map inter-annual drought dynamics using the 
vegetation health index (VHI). By capitalizing on 
the high temporal resolution of Landsat 8 imag-
ery, the research aims to detect subtle changes in 
vegetation health and land surface temperatures, 
which serve as reliable indicators of drought 
stress within the diverse savanna ecosystem. In-
tegrating optical and thermal sensor data, the re-
search aspires to provide nuanced insights into the 
impacts of climate change on drought dynamics. 
Ultimately, this endeavor aims to inform the de-
velopment of more effective drought monitoring 
and adaptation strategies tailored to the unique 
environmental context of savanna ecosystems, 
thereby contributing to the preservation and resil-
ience of these ecosystems and their communities.
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DATA AND METHODS

Research case study

The Bali Savanna ecosystem encompasses the 
entirety of the Kubu District, geographically situated 
between the coordinates 8°10’04.1” – 8°18’12.2” 
south Latitude and 115°27’11.9” – 115°36’50.5” 
east Longitude. Within the Kubu District, there 
are nine villages: Tianyar, Tianyar Barat, Tianyar 
Tengah, Kubu, Baturinggit, Sukadana, Dukuh, 
Ban, and Tulamben. This district shares its bor-
ders with the Abang District to the east, Mount 
Agung to the south, Bangli Regency and Bule-
leng Regency to the west, and the Bali Strait to 
the north. In total, the research area spans an ex-
pansive 23,241.24 hectares, encompassing a di-
verse range of landscapes and ecosystems within 
the Kubu District. The precise delineation of the 
research area is illustrated in Figure 1, providing 
a visual representation of the geographical extent 
under investigation. 

Image acquisition

The materials for this study were obtained 
from the USGS Earth Explorer website (https://
earthexplorer.usgs.gov/). The dataset utilized 
consisted of Landsat 8 imagery spanning from 
2013 to 2022, capturing images during one day 
of the dry season each year. Data processing and 

analysis were conducted as part of the study, with 
accuracy testing carried out using correlation 
analysis between soil moisture, rainfall data, and 
the extent of drought from 2013 to 2022.

Landsat 8’s primary mission is surface moni-
toring, aimed at understanding the management of 
resources crucial for sustaining humanity, such as 
food, water, and forests. This involves monitoring 
environmental impacts and changes among other 
objectives. Landsat 8 imagery comprises 11 bands, 
including visible, near infrared (NIR), short wave 
infrared (SWIR), panchromatic, and thermal bands. 
Bands 1 through 7 and 9 have a spatial resolution of 
30 meters, while band 8 has a spatial resolution of 15 
meters. Bands 10 and 11 have a coarser spatial reso-
lution of 100 meters (Roy et al., 2014). Each band 
serves a specific purpose in analyzing Landsat imag-
ery, and combinations of bands are necessary to ob-
tain imagery suitable for the desired analysis theme 
or purpose. Details of the operational land imager 
(OLI) and thermal infrared sensor (TIRS) onboard 
Landsat 8 are provided in Table 1.

Satellite image processing

Image processing involves the utilization of 
the QGIS 3.34.5 LTR application (https://qgis.
org/en/site/), specifically version 3.28 Long 
Term Release, equipped with the Semi-Au-
tomatic Classification Plugin (SCP) (https://

Figure 1. Depicts the research location viewed from different scales: the research site falls within Indonesia (a), 
it is situated in the province or island of Bali, with the research area delineated in the red zone located in 
the northeast of the island (b), the research utilizes the 2020 Google Earth base map to visualize the Bali 

Savanna Ecosystem features (c), additionally, field conditions were investigated by researchers in 2019 (d)
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plugins.qgis.org/plugins/SemiAutomaticClas-
sificationPlugin/) for comprehensive pre-pro-
cessing, processing, and post-processing of sat-
ellite images. At the pre-processing stage, dark 
object subtraction image correction, available 
within SCP, is employed to enhance the quality 
of the imagery data. Prior to further processing 
or performing raster calculations on spectral 
bands, all data undergoes projection into the 
WGS 84/UTM zone 50s coordinate system, or 
with authority ID EPSG 32750, ensuring spa-
tial consistency and accuracy.

Subsequently, the imagery data is meticulous-
ly interpreted to identify various vegetation and 
temperature-related indices, crucial for assessing 
environmental conditions and vegetation health. 
Notably, normalized difference vegetation index 
(NDVI) and vegetation condition index (VCI) are 
computed from Landsat 8 imagery data, captur-
ing the conditions during each dry season. Ad-
ditionally, land surface temperature (LST) and 
temperature condition index  (TCI) are derived 
from Landsat 8 imagery data spanning the years 
2013–2022 on an annual basis. These datasets are 
then processed by summation to obtain the annual 
LST values, providing insights into temperature 
variations over time.

Moreover, the vegetation healthy index (VHI) is 
computed through the combination of TCI with VCI 
utilizing the raster calculator feature within QGIS. 
This index offers a comprehensive assessment of 
vegetation health by integrating temperature condi-
tions with vegetation conditions. The computation 
of each parameter is guided by specific equations 
tailored to capture the nuances of environmental 

dynamics and vegetation responses over the study 
period. These meticulous processes ensure accurate 
and reliable data analysis, enabling robust insights 
into the dynamics of vegetation health and environ-
mental conditions across the study area.

The vegetation index can be calculated using 
the Equation 1,  proposed by (Rouse et al., 1973; 
Tucker, 1979), which is as follows Eq. 1:

	 NDVI =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟)  
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟) (1) 

 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 100%   (2)          

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵

1 + (𝐵𝐵𝐵𝐵 ×  𝜆𝜆)
𝑐𝑐  × 𝑙𝑙𝑙𝑙 ɛ

   (3) 

 
 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 100%  (4)  

 

	 (1)

where:	NIR is near-infrared radiation from the pix-
ex, red is red light radiation from the pixel

The VCI index is related to the long-term 
minimum and maximum values of NDVI, where-
as the TCI index is associated with the long-term 
minimum and maximum values of LST. VCI is 
calculated using the following Eq. 2:

	

NDVI =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟)  
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟) (1) 

 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 100%   (2)          

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵

1 + (𝐵𝐵𝐵𝐵 ×  𝜆𝜆)
𝑐𝑐  × 𝑙𝑙𝑙𝑙 ɛ

   (3) 

 
 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 100%  (4)  

 

	 (2)

where:	NDVI is the NDVI value in a particular 
year, NDVImin is  the long-term mini-
mum NDVI value and NDVImax is the 
long-term maximum NDVI value

To calculate TCI, the following Eq. 3, is used:
LST data is utilized to depict the thermal influ-
ence/surface temperature on plant health because 
high temperatures lead to low humidity, causing 
plants to undergo stress. LST employs the aver-
age of Bands 10 and 11 from Landsat 8 and cal-
culated using the following Eq. 3.

	

NDVI =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟)  
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟) (1) 

 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 100%   (2)          

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵

1 + (𝐵𝐵𝐵𝐵 ×  𝜆𝜆)
𝑐𝑐  × 𝑙𝑙𝑙𝑙 ɛ

   (3) 

 
 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 100%  (4)  

 

	 (3)

Table 1 Landsat 8 OLI/TIRS image specifications
Sensors Bands Wavelength (µm) Resolution (m)

Operational land imager 
(OLI)

Band 1 – coastal aerosol 0.43 – 0.45 30

Band 2 – blue 0.45 – 0.51 30

Band 3 – green 0.53 – 0.59 30

Band 4 – red 0.64 – 0.67 30

Band 5 – near infrared (NIR) 0.85 – 0.88 30
Band 6 – shortwave infrared 
(SWIR) 1 1.57 – 1.65 30

Band 7 – shortwave infrared 
(SWIR) 2 2.11 – 2.29 30

Band 8 – panchromatic 0.50 – 0.68 15

Band 9 - cirrus 1.36 – 1.38 30

Thermal infrared sensor 
(TIRS)

Band 10 – thermal infrared 
(TIRS) 1 10.60 – 11.19 100

Band 11 – (TIRS) 2 11.50 – 12.51 100
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where:	LST is Land surface temperature (°C), BT 
is the top of atmosphere brightness tem-
perature, λ is the wavelength of emitted 
radiance, c is the speed of light, and ε is 
the land surface emissivity. Next, the cal-
culated LST results are utilized to com-
pute the TCI as outlined in formula 4.

	

NDVI =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟)  
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟) (1) 

 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 100%   (2)          

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵

1 + (𝐵𝐵𝐵𝐵 ×  𝜆𝜆)
𝑐𝑐  × 𝑙𝑙𝑙𝑙 ɛ

   (3) 

 
 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 100%  (4)  

 

	 (4)

where:	TCI is the TCI value in a specific year, 
LSTmin is the long-term minimum 
LST value and LSTmax is the long-
term maximum LST value

The VHI value is obtained from the combina-
tion of VCI and TCI indices. The calculation of 
the VHI index can be done with the Formula 5:
	 𝑉𝐻𝐼 = (0.5 × 𝑉𝐶𝐼) + (0.5 × 𝑇𝐶𝐼)	 (5)

According to (Kogan, 2001), due to the un-
clear contribution of humidity and temperature 
in the vegetation cycle, it is assumed that the 
weights of VCI and TCI are equal or balanced, 
i.e., 0.5 each.

Classification of drought levels

This process is conducted after image pro-
cessing and the calculation of the VHI index. 
Subsequently, the method adopted from (Kogan, 
2001) involves grouping the VHI index into five 
drought classes. The results of this grouping are 
utilized in the data classification stage. The crite-
ria for VHI index values for each drought class 
are presented in Table 2.

RESULT AND DISCUSSIONS

Inter-annual NDVI and LST

The normalized difference vegetation index 
(NDVI) represents vegetation density, health, 
and the level of greenness of plants. NDVI values 

range from -1 to 1, with values closer to 1 indicat-
ing high levels of greenness and vegetation den-
sity, while values closer to -1 indicate non-vege-
tated areas such as water bodies, bare land, and 
built-up areas (Huang et al., 2021; Pettorelli et al., 
2005, 2011). As shown in Figure 2, the lowest av-
erage NDVI occurred in 2020, while the highest 
average was observed in 2016. This suggests that, 
overall, the average vegetation in the Bali Savan-
na is relatively healthy and not excessively poor.

The land surface temperature (LST) repre-
sents the temperature level on the surface, where 
higher values indicate hotter surface tempera-
tures and lower values indicate cooler surface 
temperatures (Hijmans et al., 2005; Li et al., 
2013; Rayner et al., 2003). Figure 2 illustrates 
that the highest temperatures occurred in 2015, 
whereas the lowest temperatures were recorded 
in 2020. This trend is also evident in the heat 
levels displayed in Figure 2, indicating signifi-
cant heat exposure in the years 2015 and 2019. 
When comparing the average NDVI and LST in 
Figure 3, differences in the increase of LST and 
the decrease of NDVI can be observed. For ex-
ample, in 2015 and 2019, there was a decrease in 
NDVI accompanied by an increase in LST. This 
comparison highlights a reduction in vegetation 
density, as indicated by the decrease in NDVI, 
coupled with a significant increase in LST, lead-
ing to drought conditions. Such data compari-
sons can effectively indicate the occurrence of 
drought disasters in specific years.

The relationship between near-infrared (NIR), 
red, and thermal infrared sensor (TIRS) bands, as 
well as the derived NDVI and LST, holds sig-
nificant implications for understanding drought 
dynamics in savanna ecosystems. In savanna re-
gions, vegetation plays a critical role in regulat-
ing water availability and maintaining ecosystem 
balance. During periods of drought, vegetation 
undergoes stress due to limited water availability, 
leading to changes in its physiological and spec-
tral properties. The NIR and Red bands, captured 

Table 2 Classification of drought levels
No VHI value Description

1 < 10 Severe drought

2 10 < 20 Moderate drought

3 20 < 30 Mild drought

4 30 < 40 Slight drought

5 > 40 No drought occurrence
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Figure 2. Inter-annual spatial distribution of NDVI and LST

Figure 3. Graph of the relationship between the mean NDVI value and LST

by sensors like Landsat 8 OLI/TIRS, are sensitive 
to these changes, reflecting alterations in vegeta-
tion density and health.

The NDVI, calculated from NIR and Red bands 
(Huang et al., 2021), serves as a robust indicator of 
vegetation condition and drought stress in savan-
nas. Decreases in NDVI values often correspond 
to reductions in vegetation greenness and densi-
ty, signalling drought-induced vegetation stress 
(Dzakiyah et al., 2022; Pettorelli et al., 2005). In 
savanna ecosystems, prolonged drought can re-
sult in widespread vegetation decline, impacting 
ecosystem services such as carbon sequestration, 
soil stabilization, and biodiversity conservation 

(Morales-Rincon et al., 2021; Sankaran, 2019; 
Staver et al., 2019; Zhang and Yuan, 2020). 

Simultaneously, LST, derived from TIRS 
data, provides insights into land surface temper-
ature variations associated with drought condi-
tions. During drought events, land surface tem-
peratures tend to rise due to reduced evaporative 
cooling from vegetation transpiration (Haza-
ymeh and Hassan, 2017; Wolteji et al., 2022). 
Consequently, areas experiencing drought stress 
exhibit elevated LST values, indicating ther-
mal anomalies and heightened surface heat-
ing. The relationship between NDVI and LST 
during drought periods in savannas is intricate 
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and dynamic. As vegetation experiences water 
stress and declines in density, NDVI values de-
crease, while LST values tend to increase due 
to decreased evaporative cooling and increased 
absorption of solar radiation by the bare ground. 
This inverse relationship between NDVI and 
LST serves as a valuable tool for monitoring 
drought impacts on savanna ecosystems.

Inter-annual VCI and TCI

The vegetation condition index (VCI) serves 
as a method for extracting and discerning weath-
er-related components within NDVI values, 
thereby acting as a seasonal risk assessment tool. 
VCI offers diverse spatial and temporal vegeta-
tion insights closely linked to local weather pat-
terns, making it a pivotal vegetation index and 
drought indicator. Utilizing the interpretation of 
vegetation health index (VHI), wherein values 
below certain thresholds signify varying degrees 
of drought severity, VCI enables the assessment 
of drought conditions. For instance, an indicator 
of < 10 suggests severe drought, < 20 indicates 
moderate drought, < 30 reflects mild drought, 
and values > 40 indicate no drought. Analysis 
presented in Table 4 across the years 2013–2022 
reveals that no area exceeding 23,000 hectares 
experienced drought, hence indicating that VCI 
alone may not suffice as a primary indicator. 
Nonetheless, as illustrated in Figure 4, some re-
gions did encounter mild drought in 2015, despite 
the absence of concurrent temperature indicators. 
Therefore, to enhance accuracy, VCI calculations 
should incorporate temperature indicators.

The temperature condition index (TCI) 
serves as an indicator derived from LST, of-
fering insights into the temperature conditions 
over vegetation cover. TCI plays a crucial role 
in conjunction with the VCI to identify drought 
occurrences in savanna area. TCI’s connection 
with VCI enables the indication of drought oc-
currence, aligning with interpretations from the 

VHI indicator, as illustrated in Table 2. Howev-
er, it’s noteworthy that drought occurrences de-
picted in TCI surpass those in VCI, highlighting 
that TCI solely reflects surface temperature and 
has yet to be integrated with the VCI indicator. 
Consequently, TCI does not currently serve as a 
primary indicator in this research

The utilization of the TCI alongside the VCI 
provides a comprehensive approach to assessing 
drought occurrences in the savanna area. While 
VCI primarily reflects vegetation health and stress, 
TCI offers valuable insights into surface tempera-
ture dynamics, which are critical factors influenc-
ing vegetation response to drought. Integrating 
these indices allows for a more nuanced under-
standing of drought dynamics, considering both 
vegetation conditions and temperature variations.

The vegetation health index

The vegetation health index (VHI) serves as 
the primary indicator utilized for classifying land 
drought through remote sensing methodologies. 
This parameter, drawn from Kogan (2001), as-
sumes a central role in this research for assessing 
drought occurrences. The outcomes of drought 
classification are presented in Table 5, elucidating 
that drought manifested most prominently in 2015 
and 2019. Specifically, in 2015, mild drought af-
fected 30.66% (7,126.02 ha) of the Savanna 
Bali area, moderate drought impacted 10.83% 
(2,517.66 ha), and severe drought was observed 
in 1.24% (288.99 ha) of the region (Table 4). Re-
search by Lorenzo and Mantua (2016), Jiménez-
Muñoz et al. (2016), and Oliveira de Morais et al. 
(2021) states that these occurrences align with the 
El Niño climate phenomenon, characterized by 
reduced rainfall and desiccated soil conditions.

Similarly, in 2019, mild drought affected 
25.72% (5,977.98 ha) of the Savanna ecosys-
tem, with moderate drought impacting 0.8% 
(199.44 ha). This condition is caused by the im-
pact of the positive Indian Ocean dipole (IOD+) 

Table 3. Statistical data on areas experiencing drought based on the vegetation condition index (VCI)
Drought 

categories VCI 2013 VCI 2014 VCI 2015 VCI 2016 VCI 2017 VCI 2018 VCI 2019 VCI 2020 VCI 2021 VCI 2022

Severe 0.09 0.18 7.2 0.09 0.27 0.45 0.09 0.18 0.27 0.09

Moderate 0 1.53 73.44 0.09 1.17 3.06 0.09 0.54 0.72 0

Mild 0.18 9.63 331.38 0 7.2 20.43 0.09 2.43 5.58 0

Slight 0 72.9 686.07 0.09 23.67 75.69 1.44 43.29 20.61 0.09

No drought 23,240.97 23.157 22.143.15 23,240.97 23,209.38 23,141.61 23,239.53 23,194.8 23,214.06 23,241.06
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phenomenon during this period (Arfaansyah et 
al., 2021; Irfan and Iskandar, 2022), although its 
intensity was notably lower compared to 2015. 
Table 4 also highlights sporadic instances of se-
vere drought, albeit at relatively lower levels. 
Additionally, Figure 4.5 illustrates widespread 
drought occurrences across Savanna Bali in 2015 
and 2019, with several points experiencing severe 
drought conditions in 2015. Conversely, in 2014, 
2018, and 2020, mild drought was observed, albe-
it confined to a few zones on the map (Figure 5).

Effect of climate change on 
agricultural drought 

The implications of climate change are 
starkly evident in savanna ecosystem, as dem-
onstrated by the dynamics of changes in the 
area experiencing drought over the past decade 

(Figure 6). One of the most significant impacts 
was observed during the transition from 2015 
to 2016, where 42.74% of the area experienced 
drought. This severe drought was followed by 
a notable recovery in vegetation, reducing the 
drought-affected area to less than 1%. This pe-
riod coincided with the el niño-southern oscilla-
tion (ENSO) phenomenon, specifically the tran-
sition from El Niño to La Niña, which is known 
to cause extreme weather variations globally.

Moreover, the effects of climate change were 
also apparent in the drought dynamics around 
2019. Prior to and following this year, the drought-
affected area was less than 3%. However, in 2019, 
the area experiencing drought surged to 26.58%. 
This dramatic increase was not only influenced 
by the ENSO event but was also significantly im-
pacted by the positive phase of the Indian Ocean 
dipole (IOD). The positive IOD, characterized by 

Figure 4. Inter-annual spatial distribution of drought based on VCI and TCI

Table 4 Statistical data on areas experiencing drought based on the temperature condition index (TCI)
Drought 

categories TCI 2013 TCI 2014 TCI 2015 TCI 2016 TCI 2017 TCI 2018 TCI 2019 TCI 2020 TCI 2021 TCI 2022

Severe 176.58 229.41 3,451.68 1,036.8 2,094.75 13.32 4,497.66 4,212.45 3,842.73 840.24

Moderate 1,433.07 9,962.1 12,029.22 8,136.72 11,300.04 2,609.37 13,868.64 10,722.78 12,761.46 9,199.62

Mild 5,567.22 10,033.83 5,616.81 9,836.28 7,501.23 13,166.64 4,173.93 3,410.46 4,875.39 10,014.39

Slight 10,002.24 2,439 1,925.91 2,407.59 2,102.22 5,569.02 6,69.06 2,516.04 1,554.66 2,842.83

No drought 6,062.13 585 217.62 1,823.85 243 1,891.89 31.95 2,379.51 207 344.16
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warmer sea surface temperatures in the western 
Indian Ocean relative to the eastern part, typically 
exacerbates drought conditions in surrounding re-
gions, including the savannas of Bali.

These observations underscore the com-
pounded effects of climate change and interan-
nual climate variability, such as ENSO and IOD, 
on drought dynamics. The interplay between 
these phenomena leads to more frequent and se-
vere drought events, highlighting the urgent need 
for comprehensive monitoring and adaptive man-
agement strategies. Understanding these climate 
drivers and their impacts on savanna ecosystems 
is crucial for developing effective mitigation and 
adaptation strategies to enhance the resilience of 
these ecosystems in the face of ongoing climate 
change. Such insights are vital for policymakers 
and conservationists working towards sustain-
able management and conservation of vulnerable 

ecosystems affected by climate variability and 
long-term climate trends.

The savanna biome, characterized by its 
blend of grasses and scattered trees, is highly 
susceptible to shifts in precipitation patterns and 
temperature regimes, particularly under the influ-
ence of climate change (Jobbágy and Jackson, 
2000; Räsänen et al., 2017). This susceptibility 
exacerbates the frequency and severity of drought 
events, placing added stress on savanna ecosys-
tems and prompting significant alterations in 
vegetation structure, composition, and distribu-
tion (Gang et al., 2016; Nippert and Holdo, 2015; 
Wilcox et al., 2020).

Recent studies have emphasized the intricate 
relationship between climate variability, drought 
occurrence, and changes in savanna vegetation 
(Bergstrom et al., 2023; Irob et al., 2023). For in-
stance, the extreme El Niño event of 2015 resulted 

Figure 5. Inter-annual drought dynamics map based VHI
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in widespread water scarcity and extended dry 
spells across the savanna landscape, significantly 
impacting vegetation health (Mbatha and Xulu, 
2018). This period saw reduced foliage density, 
increased leaf senescence, and heightened sus-
ceptibility to wildfires. Similarly, the IOD+ event 
in 2019 exacerbated drought conditions, further 
testing the resilience of savanna vegetation.

Remote sensing technologies, such as Landsat 
8 OLI/TIRS imagery, play a pivotal role in moni-
toring and assessing the impacts of drought on sa-
vanna ecosystems. By capturing high-resolution 
data on vegetation indices and land surface tem-
peratures, these satellite-based observations offer 
valuable insights into the spatial and temporal 
dynamics of drought-induced vegetation stress. 
Integrating such data derived from OLI and TIRS 
sensors allows researchers to quantify the extent 
of drought impacts, identify vulnerable areas, and 
prioritize conservation efforts effectively.

Based on high-resolution Google Earth im-
agery, the year 2019, characterized by the posi-
tive phase of the Indian Ocean Dipole (IOD+), 
exhibited significant vegetation stress, indicative 
of severe drought conditions. However, contrast-
ing this, the La Niña event in 2022 facilitated a 

recovery in vegetation, demonstrating improved 
vegetation health and reduced drought stress. 
This stark contrast between years of extreme 
drought and subsequent recovery underscores the 
profound impact of extreme climate variability on 
the savanna ecosystem (Figure 7).

Climate change has increasingly exacerbated 
the frequency and intensity of drought events, 
profoundly affecting agricultural productivity and 
ecosystem stability worldwide. These impacts are 
particularly pronounced in savanna ecosystems, 
where prolonged periods of water scarcity can 
lead to significant vegetation stress and soil deg-
radation. Monitoring these drought dynamics is 
crucial for developing effective mitigation and 
adaptation strategies.

Apart from direct ecological consequences, 
drought-induced changes in savanna vegetation 
can have profound socio-economic implications 
for local communities reliant on these ecosystems 
for livelihoods and ecosystem services. Reduced 
pasture productivity, for example, can undermine 
livestock grazing activities, leading to economic 
losses and food insecurity. Additionally, altera-
tions in vegetation cover and structure can af-
fect water availability, soil fertility, and carbon 

Figure 6. Graph of the percentage of area experiencing drought due to climate change 
in Savanna ecosystems. Note: The percentage of drought areas is derived from the 

total of four drought categories: slight, mild, moderate, and severe

Table 5 Statistical data on areas experiencing drought based on the vegetation health index (VHI)
Drought categories VHI 2013 VHI 2014 VHI 2015 VHI 2016 VHI 2017 VHI 2018 VHI 2019 VHI 2020 VHI 2021 VHI 2022

Severe 0 0 0 0 0.09 0 0.09 0.09 0.09 0

Moderate 0.09 0.18 288.99 0.18 0.45 0.27 0.18 0.45 0.72 0.09

Mild 0 18.9 2,517.66 0.09 12.15 40.05 199.44 76.41 21.51 0.09

Slight 0.36 656.28 7,126.02 0.09 211.95 489.33 5,977.98 593.55 219.42 0.18

No drought 23,240.79 22,565.88 14,118.57 23,240.88 22,986 22,711.59 17,063.55 22,570.74 22,999.5 23,240.88
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sequestration capacities, exacerbating vulnerabil-
ities in the face of climate change.

Integrating remote sensing data with predic-
tive modelling techniques also enables the de-
velopment of early warning systems for drought 
detection and monitoring. By leveraging the pre-
dictive power of remote sensing technologies, 
stakeholders can anticipate and respond to emerg-
ing drought risks promptly, minimizing the socio-
economic impacts on local communities and eco-
systems. Collaborative efforts among researchers, 
policymakers, and local communities are essen-
tial to co-design and implement context-specific 
mitigation strategies addressing the unique chal-
lenges posed by inter-annual drought dynamics in 
the savanna landscape of Bali.

CONCLUSIONS

The monitoring of extreme agricultural 
drought in the savanna ecosystem, utilizing the 
vegetation health index under the effects of cli-
mate change, revealed significant insights through 
the analysis of Landsat 8 OLI/TIRS time series 
imagery. Our study underscores the profound im-
pact of climate variability on vegetation health, 
particularly during the extreme dryness induced 
by the el niño and positive Indian Ocean dipole 
events in 2015 and 2019. These climate phenom-
ena resulted in significant drought conditions, 
which were subsequently alleviated during the La 

Niña periods, demonstrating a clear link between 
climate change and vegetation stress. Through 
the application of remote sensing technology, 
our study provided valuable insights into the 
drought dynamics of the savanna, contributing to 
informed decision-making for conservation and 
management efforts in the face of climate change.
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