PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Biophilic Installations for Indoor Air Quality Improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie instalacji biofilicznych do poprawy jakości powietrza wewnętrznego
Języki publikacji
EN
Abstrakty
EN
This paper discusses the possibilities and limitations of using biophilic installations to improve the indoor air quality in residential and commercial spaces. Modular plant systems can provide the support or, in smaller facilities, even an alternative to the conventional indoor air purification techniques, such as filtration. The unquestionable advantage of green walls is their comprehensive influence on the indoor air quality by shaping both appropriate thermal and humidity conditions as well as the chemical air composition. However, these constructions are not mechanical systems and therefore, the effectiveness of these specific types of living air purifiers in removing gaseous pollutants and particulate matter cannot be expected to match the level of traditional systems.
PL
W pracy omówiono możliwości i ograniczenia wykorzystania instalacji biofilicznych do poprawy jakości powietrza wewnętrznego w przestrzeniach mieszkalnych i komercyjnych. Roślinne systemy modułowe mogą stanowić wsparcie lub w mniejszych obiektach alternatywę dla konwencjonalnych technik oczyszczania powietrza wewnętrznego jakim jest filtracja. Niekwestionowaną zaletą zielonych ścian jest ich kompleksowy wpływ na jakość powietrza wewnętrznego poprzez kształtowanie zarówno odpowiednich warunków cieplno-wilgotnościowych jaki i składu chemicznego powietrza. Nie są to jednak układy mechaniczne i nie można oczekiwać, aby te swoistego rodzaju żywe oczyszczacze powietrza osiągały skuteczności w usuwaniu zanieczyszczeń gazowych i pyłowych na poziomie tradycyjnych systemów.
Rocznik
Strony
716--726
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Poland
Bibliografia
  • Abbas, O.A., Sailor, D.J., Gall, E.T. (2017). Effectiveness of indoor plants for passive removal of indoor ozone. Building and Environment, 119, 62-70.
  • Alcock, I., White, M.P., Wheeler, B.W., Fleming, L.E., Depledge, M.H. (2014). Longitudinal effects on mental health of moving to greener and less green urban area. Environmental Science & Technology, 48(2), 1247-1255.
  • Alhorr, Y., Aarif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: a review of the literature. Building and Environment, 105, 369-389.
  • Chen, R.Y., Ho, K.F., Hong, G.B., Chuang, K.J. (2020). Houseplant, indoor air pollution, and cardiovascular effects among elderly subjects in Taipei, Taiwan. Science of the Total Environment, 705, 135770.
  • Clapp, L., Klotz, H. (2017). Vertical gardens. London, Sydney, Auckland, New Holland Publishers.
  • Darlington, A., Chan, M., Malloch, D., Pilger, C., Dixon, M.A. (2010). The biofiltration of indoor air: implications for air quality. Indoor Air, 21, 39-46.
  • Dela Cruz, M., Christensen, J.H., Thomsen, J.D., Muller, R. (2014). Can ornament potted plants remove volatile organic compounds from indoor air? – a review. Environmental Science and Pollution Research, 21, 13909-13928.
  • Dudzińska, M.D., Staszowska, A., Połednik, B. (2010). Preliminary study of effect of furniture and finishing materials on formaldehyde concentration in office rooms. Environmental Protection Engineering, 35, 225-233.
  • Egea, G., Pérez-Urrestarazu, L., González-Pérez, J., Franco-Salas, A., Fernández-Cañero, R. (2014). Lighting systems evaluation for indoor living walls. Urban Forestry & Greening, 13, 475-483.
  • Fleck, R., Gill, R.L., Pettit, T., Irga, P.J., Williams, N.L.R., Seymour, J.R., Torpy, F.R. (2020). Characterisation of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal. Building and Environment, 179, 106987.
  • Fujii, S., Ch, H., Kagi, N., Miyamura, H., Kiim, Y.S. (2005). Effects on air pollutant removal by plant absorption and adsorption. Building and Environment, 40, 105-112.
  • Gawrońska, H., Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Quality, Atmosphere & Health, 8, 265-272.
  • Godish, T. (2001). Indoor environmental quality. CRC Press.
  • Gubb, C., Blanusa, T., Griffiths, A., Pfrang, C. (2018). Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? Air Quality, Atmosphere & Health, 11, 1191-1201.
  • Gubb C., Blanusa T., Griffiths A., Pfrang C. (2020). Can plants be considered a building service? Building Services Engineering Research & Technology, 41(3), 374-384.
  • Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., Revah, S. (2008). Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnology Advances, 26, 398-410.
  • Gunawardena K., Steemers K. (2019). Living walls in indoor environments. Building and Environment, 148, 478-487.
  • Horr, Y.A., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: a review of the literature.Building and Environment,105, 369-389.
  • Hospodosky, D., Qian, J., Nazaroff, W.W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H.Peccia, J. (2012). Human occupancy as a source of indoo airborne bacteria. PLos ONE, 7(4), e34867.
  • Irga, P., Abdo, P., Zavattaro, M., Torpy, F.R. (2017). An assessment of the potential fungal bioaerosol production from an active living wall. Building and Environment, 111, 140-146.
  • Irga, P.J., Pettit, T.J., Torpy, F.R. (2018). The phytoremediation in indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews of Environmental Science Biotechnology, 17, 395-415.
  • Kim, K.J., Khalekuzzaman, M., Suh, J.N., Kim,, H.J., Shagol, S., Kim, H.H. (2018). Phytoremediation of volatile organic compounds by indoor plants. Horticulture, Environment, and Biotechnology, 59, 143-157.
  • Luengas, A., Barona, A., Hort, C. (2015). A review of indoor air treatment technologies. Reviews in Environmental Science and Biotechnology, 14, 499-522.
  • Massey, D.D., Habil, M., Taneja, A. (2016). Particles in different indoor microenvironments – its implications on occupants. Building and Environment, 106, 237-244.
  • Midouhas, E., Kokosi, T., Flouri, E. (2018). Outdoor and indoor air quality and cognitive ability in young children. Environmental Research, 161, 321-328.
  • Moya, T., van den Dobbelsteen, A., Ottele, M., Bluyssen, P.M. (2019). A review of green systems within the indoor environment. Indoor and Built Environment, 28(3), 298-309.
  • Mujan, I., Andelković, A.S., Munćan, V., Kljapić, M., Ružić, D. (2019). Influence of indoor environmental quality on human health and productivity – a review. Journal of Cleaner Productivity, 217, 646-657.
  • Peng, Z., Deng, W., Hong, Y., Chen, Y. (2020). An experimental work to investigate the capabilities of plants to remove particulate matters in an enclosed greenhouse. Air Quality, Atmosphere & Health, 13, 477-488.
  • Pettit, T., Irga, P.J., Abdo, P., Torpy, F.R. (2017). Do the plants in functional green walls contribute to their ability to filter particulate matter? Building and Environment, 125, 299-307.
  • Pettit, T., Irga, P.J., Torpy, F.R. (2018). Towards practical indoor air phytoremediation: a review. Chemosphere, 208, 960-974.
  • Pluschke, P., Schleibinger, H. (2018). Indoor air pollution. Springer.
  • Riley, B. (2017). The state of the art of living walls: lesson learned. Building and Environment, 114, 219-232.
  • Reeve, A., Nieberler-Walker, K., Desha, C. (2017). Healing gardens in children’s hospitals: reflections on benefits, preferences and design from visitors’ books. Urban Forestry & Urban Greening, 26, 48-56.
  • Soreanu, G., Dixon, M., Darlington A. (2013). Botanical biofiltration of indoor gaseous pollutants – a mini review. Chemical Engineering Journal, 229, 585-594.
  • Söderlund, J., Newman, P. (2015). Biophilic architecture: a review of the rationale and outcomes. AIMS Environmental Science, 2(4), 950-969.
  • Staszowska A. (2017). Photodegradation of lower polybrominated diphenyl ether congeners in indoor air – model studies. Journal of Ecological Engineering 18(3), 180-186.
  • Stamatelopoulou, A., Asimakopoulos, D.N., Maggos, T. (2019). Effects of PM, TVOCs and comfort parameters on indoor air quality of residences with young children. Building and Environment, 150, 233-244.
  • Torpy, F.R., Irga, P.J., Burchett, M.D. (2014). Profiling indoor plants for the amelioration of high CO2 concentrations. Urban Forestry & Urban Greening, 13, 227-233.
  • Tudiwer, D., Korjenic, A. (2017). The effect of an indoor living wall system on humidity, mould spores and CO2 concentration. Energy and Buildings, 146, 73-86.
  • Wolkoff, P. (2020). Indoor air chemistry: terpene reaction products and airway effects. International Journal of Hygiene and Environmental Health, 225, 113439.
  • van den Bogerd, N., Dijkstra, S.C., Tanja-Dijkstra, K., de Boer, M.R., Seidell, J.C., Koole, S.L., Maas, J. (2020). Greening the classroom: three field experiments on the effects of indoor nature on students’ attention, well-being, and perceived environmental quality. Building and Environment, 171, 106675.
  • Yin, J., Zhu, S., MacNaughton, P., Allen, J.G., Spengler, J.D. (2018). Physiological and cognitive performance of exposure to biophilic indoor environment. Building and Environment, 132, 255-262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0911b7d1-137d-4c50-85fe-0b4e184afa4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.