PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of spatial distribution and the type of material on the occurrence of bandgaps in phononic crystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study investigated the effect of the fill factor, lattice constant, and the shape and type of meta-atom material on the reduction of mechanical wave transmission in quasi-two-dimensional phononic structures. A finite difference algorithm in the time domain was used for the analysis, and the obtained time series were converted into the frequency domain using the discrete Fourier transform. The use of materials with large differences in acoustic impedance allowed to determine the influence of the meta-atom material on the propagation of the mechanical wave.
Rocznik
Strony
art. no. e144609
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-201 Częstochowa, Poland
autor
  • Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava,70833 Ostrava, Czech Republic
  • Faculty of Mechanical Engineering and Computer Science, Department of Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
Bibliografia
  • [1] Lord Rayleigh, ‘XVII. “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philos. Mag., vol. 24, no. 147, pp. 145–159, 1887, doi: 10.1080/14786448708628074.
  • [2] P.A. Martin, Multiple scattering: interaction of time-harmonic waves with N obstacles. Cambridge: Cambridge University Press, 2006.
  • [3] J. Li and C.T. Chan, “Double-negative acoustic metamaterial,” Phys. Rev. E, vol. 70, no. 5, p. 055602, 2004, doi: 10.1103/PhysRevE.70.055602.
  • [4] D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, no. 5685, pp. 788–792, 2004, doi: 10.1126/science.1096796.
  • [5] F.J. Garcia-Vidal, L. Martín-Moreno, and J.B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt., vol. 7, no. 2, pp. S97–S101, 2005, doi: 10.1088/1464-4258/7/2/013.
  • [6] M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A, vol. 342, no. 5–6, pp. 497–503, 2005, doi: 10.1016/j.physleta.2005.05.076.
  • [7] T.-H. Chen, B. Zheng, C. Qian, and H.-S. Chen, “Progress of novel electromagnetic cloaking research,” Acta Phys. Sin., vol. 69, no. 15, p. 154104, 2020, doi: 10.7498/aps.69.20200976.
  • [8] A. Grbic and G.V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett., vol. 92, no. 11, p. 117403, 2004, doi: 10.1103/PhysRevLett.92.117403.
  • [9] J. Pendry, “Negative refraction,” Contemporary Physics, vol. 45, no. 3, pp. 191–202, 2004, doi: 10.1080/00107510410001667434.
  • [10] A. Sukhovich, L. Jing, and J.H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B, vol. 77, no. 1, p. 014301, 2008, doi: 10.1103/PhysRevB.77.014301.
  • [11] S. Foteinopoulou and C.M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B, vol. 72, no. 16, p. 165112, 2005, doi: 10.1103/PhysRevB.72.165112.
  • [12] J. Wang, G. Dai, and J. Huang, “Thermal Metamaterial: Fundamental, Application, and Outlook,” iScience, vol. 23, no. 10, p. 101637, 2020, doi: 10.1016/j.isci.2020.101637.
  • [13] S. Garus, W. Sochacki, M. Kubanek, and M. Nabiałek, “Minimizing the number of layers of the quasi-one-dimensional phononic structures,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139394, 2022, doi: 10.24425/bpasts.2021.139394.
  • [14] X. Zhang, Y. Li, Y. Wang, Z. Jia, and Y. Luo, “Narrow-band filter design of phononic crystals with periodic point defects via topology optimization,” Int. J. Mech. Sci, vol. 212, p. 106829, 2021, doi: 10.1016/j.ijmecsci.2021.106829.
  • [15] C.J. Rupp, M.L. Dunn, and K. Maute, “Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids,” Appl. Phys. Lett., vol. 96, no. 11, p. 111902, 2010, doi: 10.1063/1.3341197.
  • [16] L. Pomot, C. Payan, M. Remillieux, and S. Guenneau, “Acoustic cloaking: Geometric transform, homogenization and a genetic algorithm,” Wave Motion, vol. 92, p. 102413, 2020, doi: 10.1016/j.wavemoti.2019.102413.
  • [17] R.H. Olsson, I.F. El-Kady, M.F. Su, M.R. Tuck, and J.G. Fleming, “Microfabricated VHF acoustic crystals and waveguides,” Sens. Actuator A Phys., vol. 145–146, pp. 87–93, 2008, doi: 10.1016/j.sna.2007.10.081.
  • [18] B. Morvan et al., “Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal,” J. Appl. Phys., vol. 116, no. 21, p. 214901, 2014, doi: 10.1063/1.4903076.
  • [19] S. Huang, L. Peng, H. Sun, Q. Wang, W. Zhao, and S. Wang, “Frequency response of an underwater acoustic focusing composite lens,” Appl. Acoust., vol. 173, p. 107692, 2021, doi: 10.1016/j.apacoust.2020.107692.
  • [20] X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, and Y.-F. Chen, “Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode,” Phys. Rev. Lett., vol. 106, no. 8, p. 084301, 2011, doi: 10.1103/PhysRevLett.106.084301.
  • [21] J.V. Sanchez-Perez, C. Rubio, R. Martinez-Sala, R. Sanchez-Grandia, and V. Gomez, “Acoustic barriers based on periodic arrays of scatterers,” Appl. Phys.Lett., vol. 81, no. 27, pp. 5240–5242, 2002, doi: 10.1063/1.1533112.
  • [22] S.-H. Jo, H. Yoon, Y.C. Shin, and B.D. Youn, “A graded phononic crystal with decoupled double defects for broadband energy localization,” Int. J. Mech. Sci., vol. 183, p. 105833, 2020, doi: 10.1016/j.ijmecsci.2020.105833.
  • [23] Z. Wen, Y. Jin, P. Gao, X. Zhuang, T. Rabczuk, and B. Djafari-Rouhani, “Topological cavities in phononic plates for robust energy harvesting,” Mech. Syst. Signal Process., vol. 162, p. 108047, 2022, doi: 10.1016/j.ymssp.2021.108047.
  • [24] S.-H. Jo, H. Yoon, Y.C. Shin, and B.D. Youn, “An analytical model of a phononic crystal with a piezoelectric defect for energy harvesting using an electroelastically coupled transfer matrix,” Int. J. Mech. Sci, vol. 193, p. 106160, 2021, doi: 10.1016/j.ijmecsci.2020.106160.
  • [25] S. Alagoz, O.A. Kaya, and B.B. Alagoz, “Frequency-controlled wave focusing by a sonic crystal lens,” Appl. Acoust., vol. 70, no. 11–12, pp. 1400–1405, 2009, doi: 10.1016/j.apacoust.2009.06.001.
  • [26] O.R. Bilal and M.I. Hussein, “Ultrawide phononic band gap for combined in-plane and out-of-plane waves,” Phys. Rev. E, vol. 84, no. 6, p. 065701, 2011, doi: 10.1103/PhysRevE.84.065701.
  • [27] S. Garus and W. Sochacki, “Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm,” Wave Motion, vol. 98, p. 102645, 2020, doi: 10.1016/j.wavemoti.2020.102645.
  • [28] W. Sochacki, K. Błoch, and S. Garus, “Monuments protection against vibrations and noise using quasi one-dimensional acoustic barriers,” Int. J. Conserv. Sci., vol. 10, no. 4, pp. 805–810, 2019.
  • [29] W. Sochacki et al., “Designing Two-band mechanical wave filters using genetic algorithm,” Acta Phys. Pol. A, vol. 139, no. 5, pp. 479–482, 2021, doi: 10.12693/APhysPolA.139.479.
  • [30] S. Garus, W. Sochacki, J. Garus, and A.V. Sandu, “Optimization of a bandgap in the ultrasonic phononic coating,” Arch. Metall. Mater., vol. 66, no. 2, pp. 537–542, 2021, doi: 10.24425/amm.2021.135890.
  • [31] S. Garus and W. Sochacki, “The effect of layer thickness on the reflectance of a quasi one-dimensional composite built with Zr55Cu30Ni5Al10 amorphous alloy and epoxy resin,” Arch. Metall. Mater., vol. 66, no. 2, pp. 503–510, 2021, doi: 10.24425/amm.2021.135885.
  • [32] S. Garus, W. Sochacki, and M. Bold, “Transmission properties of two-dimensional chirped phononic crystal,” Acta Phys. Pol. A, vol. 135, no. 2, pp. 153–156, 2019, doi: 10.12693/APhysPolA.135.153.
  • [33] X. Liang, A.C. To, J. Du, and Y.J. Zhang, “Topology optimization of phononic-like structures using experimental material interpolation model for additive manufactured lattice infills,” Comput. Methods Appl. Mech. Eng., vol. 377, p. 113717, 2021, doi: 10.1016/j.cma.2021.113717.
  • [34] H. Gao, J. Liang, B. Li, C. Zheng, and T. Matsumoto, “A level set based topology optimization for finite unidirectional acoustic phononic structures using boundary element method,” Comput. Methods Appl. Mech. Eng., vol. 381, p. 113776, 2021, doi: 10.1016/j.cma.2021.113776.
  • [35] W. Xu, J. Ning, Z. Lin, W. Qi, H. Liu, and W. Wang, “Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals,” Mater. Today Commun., vol. 22, p. 100801, 2020, doi: 10.1016/j.mtcomm.2019.100801.
  • [36] A.K. Sharma, M. Kosta, G. Shmuel, and O. Amir, “Gradient-based topology optimization of soft dielectrics as tunable phononic crystals,” Composite Struct., vol. 280, p. 114846, 2022, doi: 10.1016/j.compstruct.2021.114846.
  • [37] Y. Chen, J. Li, and J. Zhu, “Topology optimization of quantum spin Hall effect-based second-order phononic topological insulator,” Mech. Syst. Signal Process., vol. 164, p. 108243, 2022, doi: 10.1016/j.ymssp.2021.108243.
  • [38] J.A. Kulpe, K.G. Sabra, and M.J. Leamy, “A three-dimensional Bloch wave expansion to determine external scattering from finite phononic crystals,” J. Acoust. Soc. Am., vol. 137, no. 6, pp. 3299–3313, 2015, doi: 10.1121/1.4921548.
  • [39] L. Luschi and F. Pieri, “A Transmission line model for the calculation of phononic band gaps in perforated mems structures,” Procedia Eng., vol. 47, pp. 1101–1104, 2012, doi: 10.1016/j.proeng.2012.09.343.
  • [40] Y. Jin et al., “Design of vibration isolators by using the Bragg scattering and local resonance band gaps in a layered honeycomb meta-structure,” J. Sound Vib., vol. 521, p. 116721, 2022, doi: 10.1016/j.jsv.2021.116721.
  • [41] A. Mehaney, A.M. Ahmed, F. Segovia-Chaves, and H.A. El-sayed, “Tunability of local resonant modes in Fibonacci one-dimensional phononic crystals by hydrostatic pressure,” Optik, vol. 244, p. 167546, 2021, doi: 10.1016/j.ijleo.2021.167546.
  • [42] B. Cai and P.J. Wei, “Band Gaps of 2D Phononic Crystal with Graded Interphase,” Appl. Mech. Mater., vol. 121–126, pp. 2567–2571, 2011, doi: 10.4028/www.scientific.net/AMM.121-126.2567.
  • [43] X. Pu and Z. Shi, “Periodic pile barriers for Rayleigh wave isolation in a poroelastic half-space,” Soil Dyn. Earthq. Eng., vol. 121, pp. 75–86, 2019, doi: 10.1016/j.soildyn.2019.02.029.
  • [44] C. Zhao, J. Zheng, T. Sang, L. Wang, Q. Yi, and P. Wang, “Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration,” Constr. Build. Mater., vol. 283, p. 122802, 2021, doi: 10.1016/j.conbuildmat.2021.122802.
  • [45] L. Yao, G. Jiang, F. Wu, and J. Luo, “Band structure computation of two-dimensional and three-dimensional phononic crystals using a finite element-least square point interpolation method,” Appl. Math. Model., vol. 76, pp. 591–606, 2019, doi: 10.1016/j.apm.2019.05.052.
  • [46] F.-L. Li, C. Zhang, and Y.-S. Wang, “Band structure analysis of phononic crystals with imperfect interface layers by the BEM,” Eng. Anal. Bound. Elem., vol. 131, pp. 240–257, 2021, doi: 10.1016/j.enganabound.2021.06.024.
  • [47] Q. Wei, X. Ma, and J. Xiang, “Band structure analysis of two-dimensional photonic crystals using the wavelet-based boundary element method,” Eng. Anal. Bound. Elem., vol. 134, pp. 1–10, 2022, doi: 10.1016/j.enganabound.2021.09.025.
  • [48] A. Rostami, H. Kaatuzian, and B. Rostami-Dogolsara, “Acoustic 1 × 2 demultiplexer based on fluid-fluid phononic crystal ring resonators,” J. Mol. Liq., vol. 308, p. 113144, 2020, doi: 10.1016/j.molliq.2020.113144.
  • [49] N. Aravantinos-Zafiris, F. Lucklum, and M.M. Sigalas, “Complete phononic band gaps in the 3D Yablonovite structure with spheres,” Ultrasonics, vol. 110, p. 106265, 2021, doi: 10.1016/j.ultras.2020.106265.
  • [50] D. Tarrazó-Serrano, S. Castińeira-Ibáńez, E. Sánchez-Aparisi, A. Uris, and C. Rubio, “MRI compatible planar material acoustic lenses,” Appl. Sci., vol. 8, no. 12, p. 2634, Dec. 2018, doi: 10.3390/app8122634.
  • [51] S. Yang, W.-D. Yu, and N. Pan, “Band structure in two-dimensional fiber–air phononic crystals,” Physica B Condens., vol. 406, no. 4, pp. 963–966, 2011, doi: 10.1016/j.physb.2010.12.039.
  • [52] Y. Wang, W. Song, E. Sun, R. Zhang, and W. Cao, “Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer,” Physica E Low Dimens. Syst. Nanostruct., vol. 60, pp. 37–41, 2014, doi: 10.1016/j.physe.2014.02.001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-091164df-b1a7-4cc0-b192-7c7c6a3158b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.