Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Undoped and Fe doped ZnO films of different molarities deposited by spray pyrolysis method using zinc nitrate and ferric chloride as precursors show polycrystalline nature and hexagonal wurtzite structure. Crystallite size decreases with an increase in dopant concentration from 0 at.% to 3 at.%. Doping improves the transmission of the films whereas it reduces the optical band gap of ZnO from 3.28 eV to 3.17 eV. The morphology resembles flake-like structures which collapse when the dopant is introduced. The samples are found to be sensitive to CO2 gas. Undoped ZnO shows maximum sensitivity at 350 ºC for higher concentration of CO2. Doped samples show maximum sensitivity at 200 ºC for all CO2 concentrations i.e. from 500 ppm to 4000 ppm. Maximum sensitivity is achieved at temperatures 350 ºC, 250 ºC, 300 ºC and 450 ºC for the samples prepared using precursor solution of 0.1 M molarity.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
354--361
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Physics, University of Lucknow, Lucknow-226007, India
autor
- Department of Physics, University of Lucknow, Lucknow-226007, India
autor
- Department of Physics, University of Lucknow, Lucknow-226007, India
autor
- Solid-State Physics Laboratory (SSPL), DRDO, New Delhi-110054, India
autor
- Department of Physics, University of Lucknow, Lucknow-226007, India
Bibliografia
- [1] Srivastava A., Kumar N., Khare S., Opto-Electron. Rev., 22 (2014), 68.
- [2] Shan F.K., Kim B.I., Liu G.X., Liu Z.F., Sohn J.Y., Lee W.J., Shin B.C., Yu Y.S., J. Appl. Phys., 95 ( 2004), 4772.
- [3] Misra K.P., Shukla R.K., Srivastava A., Sri-Vastava A., Appl. Phys. Lett., 95 (2009), 031901.
- [4] Misra P., Bhattacharya P., Mallik K., Ra-Jagopalan S., Kukreja L.M., Rustagi K.C., Solid State Commun., 117 (2001), 673.
- [5] Shukla R.K., Srivastava A., Srivastava A., Dubey K. C., J. Cryst. Growth, 294 (2006), 427.
- [6] Polyakov A.Y., Govorkov A.V., Smirnov N.B., Pashkova N.V., Pearton S.J., Ip K., Frazier R.M., Abernathy C.R., Norton D.P., Zavada J.M., Wilson R.G., Mater. Sci. Semicon. Proc., 7 (2004), 77.
- [7] Janisch R., Gopal P., Spaldin N.A., J. Phys.-Condens. Mat., 17 (2005), R657.
- [8] Wang C., Chen Z., He Y., Li L., Zhang D., Appl. Surf. Sci., 255 (2009), 6881.
- [9] Kim K.J., Park Y.R., J. Appl. Phys., 96 (2004), 4150.
- [10] Chen Z.C., Zhuge L.J., Wu X.M., Meng Y.D., Thin Solid Films, 515 (2007), 5462.
- [11] Rambu A.P., Nica V., Dobromir M., Superlattice. Microst., 59 (2013), 87.
- [12] Alver U., Kilinc T. ¸ Bacaksiz E., Nezir S., Mat. Sci. Eng. B-Adv., 138(2007), 74.
- [13] Xu L., Li X., J. Cryst. Growth, 312 (2010), 851.
- [14] Parra-Palomino A., Perales-Perez O., Sing-Hal R., Tomar M., Hwang J., Voyles P.M., J. Appl. Phys., 103 (2008), 07D121.
- [15] Dixit S., Srivastava A., Srivastava A., Shukla R.K., J. Appl. Phys., 102 (2007), 113114.
- [16] Srivastava A., Kumar N., Misra K.P., Khare S., Electron. Mater. Lett., 10 (2014), 703.
- [17] Xu L., Li X., J. Cryst. Growth, 312 (2010), 851.
- [18] Bedir M., Ozatas M., Yazici A.N., Kafadar E.V., Chinese Phys. Lett., 23 (2006), 939.
- [19] Gayen R.N., Sarkar K., Hussain S., Bhar R., Pal A.K., Indian J. Pure Ap. Phy., 49 ( 2011), 470.
- [20] Mishra D., Srivastava A., Srivastava A., Shukla R.K., Appl. Surf. Sci., 255 (2008), 2947.
- [21] Vijayalakshmi S., Venkataraj S., Jayavel R., J. Phys. D Appl. Phys., 41 (2008), 245.
- [22] Srivastava A., Kumar N., Misra K.P., Khare S., Mat. Sci. Semicon. Proc., 26 (2014), 259.
- [23] Khadayate R.S., Waghulde R.B., Wankhede M.G., Sali J.V., Patil P.P., B. Mater. Sci., 30 (2007), 129.
- [24] Mitra P., Chatterjee A.P., Maiti H.S., Mater. Lett., 35 (1998), 33.
- [25] Barsan N., Weimar U., J. Phys.-Condens. Mat., 1 (2003), R813.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-090d8109-ba74-41cc-b66a-0a966328e85b