PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept of a conducting composite material for lightning strike protection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on development of a multifunctional material which allows conducting of electrical current and simultaneously holds mechanical properties of a polymeric composite. Such material could be applied for exterior fuselage elements of an aircraft in order to minimize damage occurring during lightning strikes. The concept introduced in this paper is presented from the points of view of various scientific disciplines including materials science, chemistry, structural physics and mechanical engineering with a discussion on results achieved to-date and further plans of research.
Rocznik
Strony
32--46
Opis fizyczny
Bibliogr. 64 poz., rys., fot., wykr.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Fundamentals of Machinery Design, Konarskiego 18A, Gliwice 44-100, Poland
  • Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, M. Strzody 9, Gliwice 44-100, Poland
autor
  • Odessa National Academy of Food Technology, Department of Applied Physics and Electrotechnology, Kanatnaja 112, Odessa, 65039, Ukraine
  • Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias 400, Porto 4200-465, Portugal
  • University of Porto, Faculty of Engineering, Department of Mechanical Engineering, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
Bibliografia
  • 1. http://aviationknowledge.wikidot.com/aviation:boeing-787-advancements
  • 2. http://altairenlighten.com/2012/12/the-a350-xwb-prepares-for-static-testing
  • 3. Rupke E.J.: What happens when lightning strikes an airplane?, Scientific American, 14.08.2006, http://www.scientificamerican.com/article/what-happens-when-lightni.
  • 4. Gardner G.: Lightning strike protection for composite structures, High-Performance Composites 14 (2006) 44.
  • 5. Metwally I.A., A-Rahim A.A., Heidler F., Zischank W.: Computation of transient-temperature profiles in objects exposed to simulated lightning currents, International Journal of Thermal Sciences 45 (2006) 691-696.
  • 6. Ranjith R., Myong R.S., Lee S.: Computational investigation of lightning strike effects on aircraft components, International Journal of Aeronautical and Space Sciences 15 (2014) 44-53.
  • 7. Rupke E.J.: Lightning direct effects handbook, Lightning Technologies Inc., Pittsfield, 2002.
  • 8. Mulazimoglu M., Haylock L.: Recent developments in techniques to minimize lightning current arcing between fasteners and composite structure. [In] Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE), Oxford, 2011.
  • 9. Christian H.J., Blakeslee R.J., Boccippio D.J., Boeck W.L., Buechler D.E., Driscoll K.T., Goodman S.J., Hall J.M., Koshak W.J., Mach D.M., Stewart M.F.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, Journal of Geophysical Research 108 (2003) 4005.
  • 10. Aerospace Recommended Practice ARP 5414. Aircraft lightning zoning, SAE Int., 1999.
  • 11. Sweers G., Birch B., Gokcen J.: Lightning strikes: protection, inspection, and repair, Aero Magazine 4 (2012) 19-28.
  • 12. Feraboli P., Miller M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike, Composites: Part A 40 (2009) 954-967.
  • 13. Hirano Y., Katsumata S., Iwahori Y., Todoroki A.: Artificial lightning testing on graphite/epoxy composite laminate, Composites: Part A 41 (2010) 1461-1470.
  • 14. Muñoz R., Delgado S., González C., López-Romano B., Wang D.-Y., LLorca J.: Modeling lightning impact thermo-mechanical damage on composite materials, Applied Composite Materials 21 (2014) 149-164.
  • 15. Dong Q., Guo Y., Sun X., Jia Y.: Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike, Polymer 56 (2015) 385-394.
  • 16. Todoroki A., Ohara K., Mizutani Y., Suzuki Y., Matsuzaki R.: Lightning strike damage detection at a fastener using self-sensing TDR of composite plate, Composite Structures 132 (2015) 1105-1112.
  • 17. Kawakami H., Feraboli P.: Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites, Composites: Part A 42 (2011) 1247-1262.
  • 18. Gagné M., Therriault D.: Lightning strike protection of composites, Progress in Aerospace Sciences 64 (2014) 1-16.
  • 19. Long-term durability of polymeric matrix composites. K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner [eds.], Springer, New York, 2012.
  • 20. Liu Z.Q., Yue Z.F., Wang F.S., Ji Y.Y.: Optimizations of flame spraying aluminium thickness and laminate plies for composite lightning protection, Advanced Materials Research 915-916 (2014) 698-703.
  • 21. Bauhofer W., Kovacs J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology 69 (2009) 1486-1498.
  • 22. Gou J., Tang Y., Liang F., Zhao Z., Firsich D., Fielding J.: Carbon nanofiber paper for lightning strike protection of composite materials, Composites: Part B 41 (2010) 192-198.
  • 23. Morales G., Barrena M.I., Gómez de Salazar J.M., Merino C.: Conductive CNF-doped laminates processing and characterization, Journal of Composite Materials 45 (2011) 2113-2118.
  • 24. Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R., Blaine J., Yarlagadda S., Roseman D., Zeng Q., Barrera E.V.: Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection, Advanced Functional Materials 21 (2011) 2527-2533.
  • 25. Han J., Zhang H., Chen M., Wang D., Liu Q., Wu Q., Zhang Z.: The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates, Carbon 94 (2015) 101-113.
  • 26. Al-Saleh M.H., Sundararaj U.: A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47 (2009) 2-22.
  • 27. Spitalsky Z., Tasis D., Papagelis K., Galiotis C.: Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Sciences 35 (2010) 357-401.
  • 28. Aguilar J.O., Bautista-Quijano J.R., Avilés F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films, Experss Polymer Letters 4 (2010) 292-299.
  • 29. Chen Y., Wang S., Pan F., Zhang J.: A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black, Journal of Nanomaterials 2014 (2014) 614797.
  • 30. Lonjon A., Laffont L., Demont P., Dantras E., Lacabanne C.: New highly conductive nickel nanowire-filled P(VDF-TrFE) copolymer nanocomposites: elaboration and structural study, Journal of Physical Chemistry C 113 (2009) 12002-12006.
  • 31. Cho Y.S., Huh Y.D.: Synthesis of ultralong copper nanowires by reduction of copper-amine complexes, Materials Letters 63 (2009) 227-229.
  • 32. Yu Y.H., Ma C.C.M., Yuen S.M., Teng C.C., Huang Y.L., Wang I., Wei M.H.: Morphology, electrical and rheological properties of silane-modified silver nanowire/polymer composites, Macromolecular Materials and Engineering 295 (2010) 1017-1024.
  • 33. Wilms M., Conrad J., Vasilev K., Kreiter M., Wegner G.: Manipulation and conductivity measurements of gold nanowires, Applied Surface Science 238 (2004) 490-494.
  • 34. Katunin A., Krukiewicz K.: Electrical percolation in composites of conducting polymers and dielectrics, Journal of Polymer Engineering 35 (2015) 731-741.
  • 35. Jia W., Tchoudakov R., Segal E., Joseph R., Narkis M., Siegmann A.: Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers, Synthetic Metals 132 (2003) 269-278.
  • 36. Paligová M., Vilčákova J., Sáha P., Křesálek V., Stejskal J., Quadrat O.: Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base, Physica A 335 (2004) 421-429.
  • 37. Jia Q.M., Li J.B., Wang L.F., Zhu J.W., Zheng M.: Electrically conductive epoxy resin composites containing polyaniline with different morphologies, Materials Science and Engineering: A 448 (2007) 356-360.
  • 38. Kumar V., Yokozeki T., Goto T., Takahashi T.: Mechanical and electrical properties of PANI-based conductive thermosetting composites, Journal of Reinforced Plastics and Composites 34 (2015) 1298-1305.
  • 39. Men'shikov M.V.: Estimates for percolation thresholds for lattices in Rn, Soviet Mathematics Doklady 32 (1985) 368-370.
  • 40. Men'shikov M.V., Molchanov S.A., Sidorenko A.F.: Percolation theory and some applications, Journal of Soviet Mathematics 42 (1988) 1766-1810.
  • 41. Kozlov S.M.: Geometric aspects of averaging, Russian Mathematical Surveys 44 (1989) 91-132.
  • 42. Zhikov V.V.: Asymptotic problems connected with the heat equation in perforated domains, Mathematics of the USSR-Sbornik 71 (1992) 125-147.
  • 43. Shklovskii B., Efros A.: Percolation theory and conductivity of strongly inhomogeneous media, Soviet Physics Uspekhi 18 (1975) 845-862.
  • 44. Sokolov I.M.: Dimensionalities and other geometric critical exponents in percolation theory, Soviet Physics Uspekhi 29 (1986) 924-945.
  • 45. Herega A.N.: Physical aspects of self-organization processes in composites. 1. Simulation of percolation clusters of phases and of inner boundaries, Nanomechanics Science and Technology 4 (2013) 119-132.
  • 46. Herega A. The dimensions: Genesis of representations and physical applications, Proceedings of the Odessa National Academy of Food Technologies 47 (2015) 33-44 (in Russian).
  • 47. Haberko J., Raczkowska J., Bernasik A., Rysz J., Nocun M., Niziol J.: Conductivity of thin polymer films containing polyaniline, Molecular Crystals and Liquid Crystals 485 (2008) 796-803.
  • 48. Yague J.L., Guimera A., Villa R., Agullo N., Borros S.: A new four-point probe design to measure conductivity in polymeric thin films, Afinidad 70 (2013) 166-169.
  • 49. Tanzifi M., Eisazadeh H.: Effects of various surfactants and solutions on the morphology of polyaniline composite and nanocomposite, Journal of Vinyl and Additive Technology 17 (2011) 274-280.
  • 50. Tran H.D., D’Arcy J.M., Wang Y., Beltramo P.J., Strong V.A., Kaner R.B.: The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures, Journal of Materials Chemistry 21 (2010) 3534-3550.
  • 51. Li L., Ferng L., Wei Y., Yang C., J H.F.: Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water, Journal of Colloid and Interface Science 381 (2012) 11-16.
  • 52. Khalid M., Tumelero M.A., Brandt I.S., Zoldan V.C., Acuna J.J.S., Pasa A.A.: Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids, Indian Journal of Materials Science 2013 (2013) 718304.
  • 53. Jagadeesh Babu V., Murthy D.V.B., Subramanian V., Murthy V.R.K., Natarajan T.S., Ramakrishna S.: Microwave Hall mobility and electrical properties of electrospun polymer nanofibers, Journal of Applied Physics 109 (2011) 074306.
  • 54. Sutar D.S., Tewari R., Dey G.K., Gupta S.K., Yakhmi J.V.: Morphology and structure of highly crystalline polyaniline films, Synthetic Metals 159 (2009) 1067-1071.
  • 55. Catalanotti G., On the generation of RVE-based models of composites reinforced with long fibres or spherical particles, Composite Structures 138 (2016) 84-95.
  • 56. Lubachevsky B.D., Stillinger F.H.: Geometric properties of random disk packings, Journal of Statistical Physics 60 (1990) 561-583.
  • 57. Catalanotti G., Katunin A., Modelling the electro-mechanical properties of PPy/epoxy condictive composites, Computational Materials Science 113 (2016) 88-97.
  • 58. Armelin E., Meneguzzi A., Ferreira C.A., Aleman C.: Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion, Surface and Coatings Technology 203 (2009) 3763-3769.
  • 59. Yang X., Zhao T., Yu Y., Wei Y.: Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network, Synthetic Metals 142 (2004) 57-61.
  • 60. Airoudj A., Debarnot D., Beche B., Poncin-Epaillard F.: Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite, Talanta 77 (2009) 1590-1596.
  • 61. Oyharcabal M., Olinga T., Foulc M.P., Vigneras V.: Polyaniline/clay as nanostructured conductive filler for electrically conductive epoxy composites. Influence of filler morphology, chemical nature of reagents, and curing conditions on composite conductivity, Synthetic Metals 162 (2012) 555-562.
  • 62. Schettini A., Peres R.C.D., Soares B.G.: Synthesis of polyaniline/camphor sulfonic acid in formic acid medium and their blends with polyamide-6 by in situ polymerization, Synthetic Metals 159 (2009) 1491-1495.
  • 63. Yang X., Zhao T., Yu Y., Wei Y.: Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network, Synthetic Metals 142 (2004) 57-61.
  • 64. Tiitu M., Talo A., Forsen O., Ikkala O.: Aminic epoxy resin hardeners as reactive solvents for conjugated polymers: polyaniline base/epoxy composites for anticorrosion coatings, Polymer 46 (2005) 6855-6861.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-090ce5cb-bde3-4337-a93e-569389a0ea32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.