Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Produkcja bioetanolu 2 generacji ze słomy podczas jednoczesnego mikrobiologicznego scukrzania i fermentacji
Języki publikacji
Abstrakty
The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the first stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharification and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the effectiveness of the process than the type of straw used.
Celem pracy była ocena możliwości biochemicznej konwersji odpadowej biomasy lignocelulozowej do bioetanolu 2 generacji. W badaniach użyto trzech substratów: słomy jęczmiennej, żytniej oraz pszenżytniej. W pierwszym etapie badań zostały wyselekcjonowane szczepy bakterii zdolne do konwersji biomasy odpadowej z wytworzeniem cukrów wykorzystywanych do produkcji użytecznego energetycznie etanolu. Z wyizolowanych ośmiu szczepów, na podstawie wartości indeksu aktywności, wybrano trzy charakteryzujące się największym potencjałem. Surowce poddano hydrolizie enzymatycznej stosując metodę jednoczesnego scukrzania i fermentacji (proces SSF). Na podstawie przeprowadzonych badań stwierdzono, że badana biomasa odpadowa nadaje się do produkcji bioetanolu celulozowego. W wyniku destylacji, w zależności od szczepu i rodzaju surowca, uzyskano etanol o stężeniu 10% i 15% (v/v). Wykazano, że większy wpływ na efektywność procesu miał szczep bakterii niż rodzaj użytego materiału słomiastego.
Czasopismo
Rocznik
Tom
Strony
47--52
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology,Department of Renewable Energy Engineering, Poland
autor
- West Pomeranian University of Technology,Department of Renewable Energy Engineering, Poland
autor
- University of Life Sciences in Lublin, Department of Power Engineering and Transportation, Poland
- University of Life Sciences in Lublin, Department of Power Engineering and Transportation, Poland
autor
- West Pomeranian University of Technology,Department of Renewable Energy Engineering, Poland
Bibliografia
- 1. Ali, I.W., Rasul, B.R., Aziz, K.K., Bujag, A., Shamsiah, D.S. & Zainudin, A. (2012). Production of biocellulosic ethanol from wheat straw, Acta Polytechnica, 53, 2, pp. 28-34.
- 2. Bajpai, P. (2013). Advances in bioethanol, Springer, New Delhi 2013. Bezergianni, S. (2013). Catalytic hydroprocessing of liquid biomass for fuels production In: Fang, Z. (Ed.), Liquid, Gaseous and solid biofuels, IntechOpen, DOI: 10.5772/52649.
- 3. Cutzu, R. & Bardi, L. (2017). Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation, 3, 2, 24.
- 4. Czop, M. & Kajda-Szcześniak, M. (2013). Environmental impact of straw based fuel combustion. Archives of Environmental Protection, 39, 4, DOI: 10.2478/aep-2013-0031.
- 5. Dahnum, D., Tasum, S.O., Triwahyuni, E., Nurdin, M. & Abimanyu, H. (2015). Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch, Energy Procedia, 68, pp. 107-116.
- 6. de Souza, W.R. (2013). Microbial degradation of lignocellulosic biomass. In: Chandel, A.K. (Ed.), Sustainable degradation of lignocellulosic biomass. Techniques, applications and commercialization, IntechOpen, DOI: 10.5772/54325.
- 7. Florencio, C., Couri, S. & Farinas, C.S. (2012). Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains, Enzyme Research, 2012, 793708, DOI: 10.1155/2012/793708.
- 8. Galbe, M. & Zacchi, G. (2013). Bioethanol from celluloses, In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L. & Vega L.A. (Eds.), Renewable Energy Systems (pp. 45-71). Springer, New York. DOI: 10.1007/978-1-4614-5820-3_521.
- 9. Ghimire, S., Bhattarai, S., Phuyal, S., Thapa, B. & Shrestha, B.G. (2016). Isolation and screening of potential cellulolytic and xylanolytic bacteria from soil sample for degradation of lignocellulosic biomass, The Journal of Tropical Life Science, 6, 3, pp. 165-169.
- 10. Hawrot-Paw, M. & Izwikow, M. (2016). Cellulolytic activity of Trichoderma viride with regard to selected lignocellulosic waste material, Journal of Ecological Engineering, 17, 1, pp. 119-122.
- 11. Johnsen, H.R & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: Application to soluble cellulolytic samples and to plant tissue prints, International Journal of Molecular Sciences, 15, 1, pp. 830-838.
- 12. Koppram, R., Nielsen, F., Albers, E., Lambert, A., Wännström, S., Welin, L., Zacchi, G. & Olsson, L. (2013). Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales, Biotechnology for Biofuels, 6, 2, DOI: 10.1186/1754-6834-6-2.
- 13. Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Industrial and Engineering Chemistry Research, 48, 8, pp. 3713-3729, DOI: 10.1021/ie801542g.
- 14. Lennartsson, P.R., Erlandsson, P. & Taherzadeh, M.J. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products, Bioresource Technology, 165, pp. 3-8.
- 15. Lin, Y. & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects, Applied Microbiology and Biotechnology, 69, pp. 627-642.
- 16. Maki, M., Leung, K.T. & Qin, W. (2009). The prospect of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass, International Journal of Biological Sciences, 5, 5, pp. 500-516.
- 17. Nikolić, S., Mojović, L. & Rakin, M. (2011). Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn, Clean Technologies and Environmental Policy, 13, 587, DOI: 10.1007/s10098-011-0366-0.
- 18. Olofsson, K., Bertilsson, M. & Linden, G. (2008). A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks, Biotechnology for Biofuels, 1, 7, DOI: 10.1186/1754-6834-1-7.
- 19. Robak, K. & Balcerek, M. (2017). Role of lignocellulosic biomass pretreatment in the production of 2nd generation bioethanol, Acta Agrophysica, 24, 2, pp. 301-318. (in Polish)
- 20. Saini, J.K., Saini, R. & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments, 3 Biotech, 5, 4, pp. 337-353, DOI: 10.1007/s13205-014-0246-5.
- 21. Saka, A. & Afolabi, A.S. (2015). Production and characterization of bioethanol from sugarcane bagasse as alternative energy sources, Proceedings of the World Congress on Engineering 2015 Vol II WCE 2015, July 1-3, 2015, London, U.K., pp. 876-880, ISBN:978-988-14047-0-1 ISSN: 2078-0958 (Print); ISSN: 2078-0966.
- 22. Sanchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi, Biotechnology Advances, 27, pp. 185-194.
- 23. Sanchez, Ó.J. & Montoya, S. (2013). Production of bioethanol from biomass: An overview, In: Gupta, V. & Tuohy, M. (Eds.), Biofuel Technologies, (pp. 397-441). Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-34519-7_16.
- 24. Scully, S.M. & Orlygsson, J. (2015). Recent advances in second generation ethanol production by thermophilic bacteria, Energies, 8, 1, pp. 1-30.
- 25. Shah, A.R. & Madamwar, D. (2005). Xylase production under solid--state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India, World Journal of Microbiology and Biotechnology, 21, pp. 233-243, DOI: 10.1007/s11274-004-3622-1.
- 26. Shahare, V.V., Kumar, B. & Singh, P. (2017). Biofuels for sustainable development: a global perspective, In: Singh, R. & Kumar, S. (Eds.). Green Technologies and Environmental Sustainability (pp. 67-89). Springer, Cham. DOI: 10.1007/978-3-319-50654-8_3.
- 27. Shao, X. & Lynd, L. (2013). Kinetic modeling of xylan hydrolysis in co-and countercurrent liquid hot water flow-through pretreatments, Bioresource Technology, 130, pp. 117-124.
- 28. Sindhu, R., Binod, P. & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - An overview, Bioresource Technology, 199, pp. 76-82.
- 29. Sørensen, G., Sørensen, K.B., Hansen, H.O. & Nygaard, S.D. (2010). Fuel for the future: Development of new fuels, In: Whitby, C. & Skoyhus, T. (Eds.), Applied Microbiology and Molecular Biology in Oilfield Systems (pp. 219-228). Springer, Dordrecht. DOI: 10.1007/978-90-481-9252-6_26.
- 30. Su, Y., Yu, X., Sun, Y., Chen, H. & Chen, G. (2018). Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover, Scientific Reports, 8, 5385.
- 31. Swain, M.R., Singh, A., Sharma, A.K. & Tuli, D.K. (2018). Bioethanol production from rice- and wheat straw: An overview, In: Ray, R.C. & Ramachandran, S. (Eds.), Bioethanol production from food crops (pp. 213-231). Academic Press, Elsevier. DOI: 10.1016/B978-0-12-813766-6.00011-4.
- 32. Świątek, M., Lewandowska, M. & Bednarski, W. (2011). The improvement of biotechnological processes applied in production of second generation ethanol from lignocellulosic raw materials, Postępy Nauk Rolniczych, 63, 1, pp. 121-131. (in Polish)
- 33. Talebnia, F., Karakashev, D. & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation, Bioresource Technology, 101, 13, pp. 4744-4753, DOI: 10.1016/j.biortech.2009.11.080.
- 34. Vats, S., Maurya, D.P., Shaimoon, M., Agarwal, A. & Negi, S. (2013). Development of a microbial consortium for the production of blend enzymes for the hydrolysis of agricultural waste into sugars, Journal of Scientific and Industrial Research, 72, 09-10, pp. 585-590.
- 35. Wagner, A.O., Lackner, N., Mutschlechner, M., Prem, E.M., Markt, R. & Illmer, P. (2018). Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production, Energies, 11, 1797, DOI: 10.3390/en11071797.
- 36. Wang, M., Han, J., Dunn, J.B., Cai, H. & Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use, Environmental Research Letters, 7, 045905, pp. 13, DOI: 10.1088/1748-9326/7/4/045905.
- 37. Wilhelm, R.C., Singh, R., Eltis, L.D. & Mohn, W.W. (2019). Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing, Multidisciplinary Journal of Microbial Ecology, 13, pp. 413-429.
- 38. Woo, H.L., Hazen, T.C., Simmons, B.A. & DeAngelis, K.M. (2014). Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 37, 1, pp. 60-67.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-090c1458-f515-4b54-b433-4970caaea90a