PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of synchronous generators for the analysis of frequency transients above 1 Hz/s

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large synchronous generators are of high importance for the stability of power systems. They generate the frequency of the system and stabilize it in case of severe grid faults like trips of large in-feeders or loads. In distributed energy systems, in-feed via inverters will replace this generation in large parts. Modern inverters are capable of supporting grid frequency during severe faults by different means on the one hand. On the other hand, higher Rates of Change of Frequency (RoCoF) after incidents need to be accustomed by future systems. To be able to analyse the RoCoF withstand capability of synchronous or induction generators, suitable models need to be developed. Especially the control and excitation system model need enhancements compared to models proposed in standards like IEEE Std 421.5. This paper elaborates on the necessary modelling depth and validates the approach with example results.
Rocznik
Strony
687--700
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
  • Bureau Veritas CPS Germany GmbH, Germany
Bibliografia
  • [1] European Parliament, European Council, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009, Official Journal of the European Union, L 140, pp. 16–62 (2009).
  • [2] VDE-AR-N 4120:2018-11, Technical Connection Rules for High-Voltage (2018).
  • [3] Ziping Wu, Wenzhong Gao, Tianqi Gao, Weihang Yan, Huaguang Zhang, Shijie Yan, Xiao Wang, State of-the-art review on frequency response of wind power plants in power systems, Journal of Modern Power Systems and Clean Energy 6.1, ISSN 2196-5420, pp. 1–16 (2018), DOI: 10.1007/s40565-017-0315-y.
  • [4] O’Sullivan J., Rogers A., Flynn D., Smith P., Mullane A., O’Malley M., Studying the Maximum Instantaneous Non-Synchronous Generation in an Island System; Frequency Stability Challenges in Ireland, IEEE Transactions on Power Systems 29.6, ISSN 0885-8950, pp. 2943–2951 (2014), DOI: 10.1109/TPWRS.2014.2316974.
  • [5] Lambrecht D., Kulig T., Torsional Performance of Turbine Generator Shafts Especially Under Resonant Excitation, IEEE Transactions on Power Apparatus and Systems PAS-101.10, ISSN 0018-9510, pp. 3689–3702 (1982), DOI: 10.1109/TPAS.1982.317054.
  • [6] Assenkamp A., Methods to Assess the Rate of Change of Frequency Withstand Capability of Large Power Plants, Cuvillier Verlag Göttingen, ISBN 978-3-73697-087-8 (2019).
  • [7] Doheny D., Conlon M., Investigation into the local nature of rate of change of frequency in electrical power systems, 2017 52nd International Universities Power Engineering Conference (UPEC), pp. 1–6 (2017), DOI: 10.1109/UPEC.2017.8231982.
  • [8] Nahid-Al-Masood, Modi N., Saha T.K., Yan R., Investigation of nonsynchronous penetration level and its impact on frequency response in a wind dominated power system, 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016), DOI: 10.1109/PESGM.2016.7741587.
  • [9] Ha Thi Nguyen, Guangya Yang, Nielsen A.H., Jensen P.H., Frequency stability improvement of low inertia systems using synchronous condensers, 2016 IEEE International Conference on Smart Grid Communications (SmartGrid-Comm), pp. 650–655 (2016).
  • [10] Huang J., Preece R., HVDC-based fast frequency support for low inertia power systems, 13th IET International Conference on AC and DC Power Transmission (ACDC 2017), pp. 1–6 (2017).
  • [11] Assenkamp A., Hoffmann R., Kreischer C., Exnowski S., Simulative Analyses of Dynamical Behaviour of Steam-Powered Turbo generators during Power System Incidents with a higher Rate of Change of Frequency, IET RTDN (2017), 24 (6–246)(6), ISSN 978-1-78561-662-4, pp. 137–142 (2018), DOI: 10.1049/cp.2017.0343.
  • [12] Kreischer C., Kulig S., Göbel C., Applicability of Park transformation for the analysis of transient performance during subsynchronous resonances, Archives of Electrical Engineering, vol. 62, no. 3, pp. 401–415, ISSN 1427-4221 (2013), DOI: 10.2478/aee-2013-0032.
  • [13] IEEE Std 421.5-2016, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, pp. 1–207 (2016).
  • [14] Pouyan Pourbeik et al., Dynamic Models for Turbine-Governors in Power System Studies, Technical Report PES TR-1, IEEE Power and Energy Society (2013).
  • [15] IEC 60255-24, Measuring relays and protection equipment – Part 24: Common format for transient data exchange (COMTRADE) for power systems (2013).
  • [16] Assenkamp A., Kreischer C., Kulig S., Capability of synchronous machines to ride through events with high ROCOF, Archives of Electrical Engineering, vol. 68, no. 2, pp. 325–339, ISSN 1427-4221 (2019), DOI: 10.24425/aee.2019.128271.
  • [17] Geoff Klempner, Handbook of Large Turbo-Generator Operation and Maintenance (IEEE Press Series on Power Engineering 91), Wiley, ISBN 978-1119389767, 3rd edition (2017).
  • [18] Lambrecht D., Kulig T., Torsional Performance of Turbine Generator Shafts Especially Under Resonant Excitation, IEEE Transactions on Power Apparatus and Systems PAS-101.10, pp. 3689–3702, ISSN 0018-9510 (1982), DOI: 10.1109/TPAS.1982.317054.
  • [19] IEEE Std 115-2009, IEEE Guide for Test Procedures for Synchronous Machines – Part I Acceptance and Performance Testing – Part II Test Procedures and Parameter Determination for Dynamic Analysis, pp. 1–219 (2009), DOI: 10.1109/IEEESTD.2010.5953453.
  • [20] IEEE Std 1110-2002, IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses (2003).
  • [21] Serban E., Ordonez M., Pondiche C., Voltage and Frequency Grid Support Strategies Beyond Standards, IEEE Transactions on Power Electronics 32.1, pp. 298–309, ISSN 0885-8993 (2017), DOI: 10.1109/TPEL.2016.2539343.
  • [22] Kerperin A., Assenkamp A., Kreischer C., PSS Modification to stabilize synchronous machines during events with high rate of change of frequency, 2019 IEEE PowerTech, Milan, ISBN 978-1-5386-4722-6 (2019), DOI: 10.1109/PTC.2019.8810981.
  • [23] Nocon A., Paszek S., Analysis of power system stabilizer Pareto optimisation when taking into account the uncertainty of power system mathematical model parameters, Archives of Electrical Engineering, vol. 60, no. 4, pp. 385–398, ISSN 1427-4221 (2011), DOI: 10.2478/v10171-011-0033-4
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-090a63d2-15f1-4b96-825b-1e5689aa7481
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.