PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer in helical coil heat exchanger:An experimental parametric study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Helical coil heat exchangers are widely used in a variety of industry applications such as refrigerationsystems, process plants and heat recovery. In this study, the effect of Reynolds number and theoperating temperature on heat transfer coefficients and pressure drop for laminar flow conditions wasinvestigated. Experiments were carried out in a shell and tube heat exchanger with a copper coiledpipe (4 mm ID, length of 1.7 m and coil pitch of 7.5 mm) in the temperature range from 243 to 273 K.Air – propan-2-ol vapor mixture and coolant (methylsilicone oil) flowed inside and around the coil,respectively. The fluid flow in the shell-side was kept constant, while in the coil it was varied from 6.6to 26.6 m/s (the Reynolds number below the critical value of 7600). Results showed that the helicalpipe provided higher heat transfer performance than a straight pipe with the same dimensions. Theconvective coefficients were determined using the Wilson method. The values for the coiled pipe werein the range of 3–40 W/m2·K. They increased with increasing the gas flow rate and decreasing thecoolant temperature.
Rocznik
Strony
101–--114
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technologyand Engineering, Institute of Chemical Engineering and Environmental Protection Processes,al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technologyand Engineering, Institute of Chemical Engineering and Environmental Protection Processes,al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Alimoradi A., 2017. Study of thermal effectiveness and its relation with NTU in shell and helically coiled tube heatexchangers.Case Stud. Therm. Eng., 9, 100–107. DOI: 10.1016/j.csite.2017.01.003.
  • 2. Bejan A., Kraus A., 2003.Heat transfer handbook. John Wiley & Sons, Inc., Hoboken.
  • 3. Błasiński M., Młodziński B., 1983.Aparatura przemysłu chemicznego. Wydawnictwa Naukowo-Techniczne,Warszawa.
  • 4. Cioncolini A., Santini L., 2006. An experimental investigation regarding the laminar to turbulent flow transition inhelically coiled pipes. Exp. Therm Fluid Sci., 30, 367–380. DOI: 10.1016/j.expthermflusci.2005.08.005.
  • 5. Flórez-Orregoa D., Ariasa W., Lópeza D., Velásqueza H., 2012. Experimental and CFD study of a single phasecone-shaped helical coiled heat exchanger: an empirical correlation, In: Sciubba E., Manfrida G., Desideri U.(Eds.),ECOS 2012 The 25th International Conference on Efficiency, Cost, Optimization and Simulation of EnergyConversion Systems and Processes. Firenze University Press. ID 375.
  • 6. Ghias A.S.A., Ananth S.V., Anand M.D., Devadhas G.G., 2016.Experimental study of thermal performance of coilin shell heat exchanger.Indian J. Sci. Technol., 9, 1–17. DOI: 10.17485/ijst/2016/v9i13/90571.
  • 7. Gupta R., Wanchoo R.K., Jafar Ali T.R.M., 2011. Laminar flow in helical coils: a parametric study.Ind. Eng. Chem.Res., 50, 1150–1157. DOI: 10.1021/ie101752z.
  • 8. Jamshidi N., Farhadi M., Ganji D., Sedighi K., 2013. Experimental analysis of heat transfer enhancement in shelland helical tube heat exchangers.Appl. Therm. Eng., 51, 644–652. DOI: 10.1016/j.applthermaleng.2012.10.008.
  • 9. Jayakumar J.S., 2012.Helically coiled heat exchangers. INTECH Open Access Publisher.
  • 10. Ju H., Huang Z., Xu Y., Duan B., Yu Y., 2001. Hydraulic performance of small bending radius helical coil-pipe.J. Nucl. Sci. Technol., 38, 826–831. DOI: 10.1080/18811248.2001.9715102.
  • 11. Kocatepe Y., Ahn H., Aydin C., Karacasu A., 2009. Experimental investigation of a heat exchanger with a helicalcoil made of corrugated tubes.17. National Thermal Science and TechnologyCongress (ULIBTK’09).CumhuriyetUniversity, Sivas, 24 June 2009.
  • 12. Kumar V., Mridha M., Gupta A., Nigam K., 2007. Coiled flow inverter as a heat exchanger.Chem. Eng. Sci., 62,2386–2396. DOI: 10.1016/j.ces.2007.01.032.
  • 13. Kumbhare B.P., Purandare P.S., Mali K.V., 2012. Experimental analysis of square and circular helical coil for theheat recovery system.International Journal of Engineering & Science Research, 2 (5), 318-327.
  • 14. Nada S.A., Eid E.I., Abd El Aziz G.B., Hassan H.A., 2016. Performance enhancement of shell and helical coilwater coolers using different geometric and fins conditions.Heat Transfer Asian Res., 45, 631–647. DOI: 10.1002/htj.21180.
  • 15. Naphon P., Wongwises S., 2006. A review of flow and heat transfer characteristics in curved tubes.RenewableSustainable Energy Rev., 10, 463–490. DOI: 10.1016/j.rser.2004.09.014.
  • 16. Pandey A.K., Mishra P.K., Srivastava K.K., 2015. Theoretical study of single phase heat transfer in a helicallycoiled tube of small diameter.IJCEA, 6, 460–463 DOI: 10.7763/IJCEA.2015.V6.530.
  • 17. Pettersen J., Rieberer R., Munkejord S.T., 2000. Heat transfer and pressure drop for flow of supercritical andsubcritical CO2in microchannel tubes. Technical Report. SINTEF Energy Research, Trondheim, Norway.
  • 18. Sapali S.N., Patil P.A., 2010. A new experimental techniqueto determine heat transfer coefficient and pressure dropin smooth and micro-fin tube.J. Mech. Eng. Res., 2, 4, 71–84.
  • 19. Schmidt E.F., 1967. Wärmeübergang und Druckverlust in Rohrschlangen.Chemie Ing. Tech., 39, 781–789.DOI: 10.1002/cite.330391302.
  • 20. Shah R., Sekulić D., 2003.Fundamentals of heat exchanger design. John Wiley &Sons, Inc., Hoboken.
  • 21. Shiragami N., Inoue I., 1986. Pressure losses in rectangular bends, In: Cheremisinoff N.P. (Ed.),Encyclopedia of Fluid Mechanics: Flow phenomena and measurement. Gulf Pub. Co., Book Division, 870-895.
  • 22. Silva L.F., Marczak L.D.F., Möller S.V., 2001. Determination of the local heat transfer coefficient in pipes withhelical turbulence promoters through the naphthalene sublimation technique.Lat. Am. Appl. Res., 31, 5, 495–500.
  • 23. Sobota T., 2011. Experimental prediction of heat transfer correlations in heat exchangers, In: Dos Santos BernardesM.A. (Ed.),Developments in heat transfer.InTech.DOI: 10.5772/20362.
  • 24. Srinivasan, P.S., Nandapurkar, S.S., Holland, F.A., 1968.Pressure drop and heat transfer in coils.The ChemicalEngineer, 218, 113–119.
  • 25. Thulukkanam K., 2013.Heat exchanger design handbook. Second edition.CRC Press, Boca Raton
  • 26. Uhía F.J., Campo A., Fernández-Seara J., 2013. Uncertaintyanalysis for experimental heat transfer data obtainedby the Wilson plot method: Application to condensation on horizontal plain tubes.Therm. Sci., 17, 2, 471–487.DOI: 10.2298/TSCI110701136U.
  • 27. Urbanowicz-Górska A., Wojtkowiak J., 2012. Method of heat and fluid flow calculations of vertical helical pipeimmersed in cold liquid of constant temperature. Part 1. Equations and algorithm of the method.Ciepłownictwo,Ogrzewnictwo, wentylacja, 43, 7, 284-288.
  • 28. Van Rooyen E., Christians M., Thome J.R., 2012. Modified Wilson plots for enhanced heat transfer experiments:current status and future perspectives.Heat Transfer Eng., 33, 342-3-55. DOI: 10.1080/01457632.2012.611767.
  • 29. Vashisth S., Kumar V., Nigam K.D.P., 2008. A Review on the Potential Applications of Curved Geometries inProcess Industry.Ind. Eng. Chem. Res., 47, 3291–3337. DOI: 10.1021/ie701760h.
  • 30. Witchayanuwat W., Kheawhom S., 2010. Heat transfer coefficients for particulate airflow in shell and coiled tubeheat exchangers.International Journal of Chemical and Biological Engineering, 3, 1, 7–11.
  • 31. Yang R., Chiang F.P., 2002. An experimental heat transfer study for periodically varying-curvature curved-pipe.Int. J. Heat Mass Transfer, 45, 3199–3204. DOI: 10.1016/S0017-9310(02)00023-6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0906a711-5d4b-4437-a083-8f17a53de6eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.