PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and analysis range extender for battery electric vehicles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie i analiza zastosowania układu zwiększania zasięgu dla pojazdów elektrycznych
Języki publikacji
EN
Abstrakty
EN
The publication presents the results of analysis regarding the use of low-power diesel generating sets used to increase the range of electric vehicles. Diesel generating sets are a solution to basic shortcomings of electric vehicles, such as their short range, resulting from the limited capacity of batteries and their long charging time. They are mainly used for long-distance journeys between cities. The paper discusses the basic configurations of drive systems used in electric and hybrid vehicle and the basic configurations of drive systems using combustion generating sets for increasing the range of vehicles with electric drive are presented. On the basis of traction tests performed in real road conditions for an electric car assisted by two diesel generators (4 kW petrol, 5.5 kW diesel) installed on a light trailer, a mathematical model of the system was developed in the Modelica environment. The mathematical model developed takes into account the dynamic loads acting on the set of vehicles in motion along with the electric drive system supported by the diesel generator set. The results of simulation tests for selected route profiles and driving speed are presented. Research has been carried out on selected values of the state of charge SOCON-OFF (State Of Charge) of batteries, which cause a several percent impact on reduction of fuel consumption and the emission of harmful gases to the atmosphere by internal combustion engines.
PL
W publikacji przedstawiono wyniki analiz dotyczących zastosowania spalinowych zespołów prądotwórczych małej mocy wykorzystywanych do zwiększania zasięgu pojazdów z napędem elektrycznym. Spalinowe zespoły prądotwórcze stanowią rozwiązanie podstawowych wad pojazdów elektrycznych, takich jak ich krótki zasięg, wynikający z ograniczonej pojemności akumulatorów i długiego czasu ich ładowania. Stosuje się je głównie do przejazdów na długich dystansach pomiędzy miastami. W pracy omówiono podstawowe konfiguracje układów napędowych stosowanych w pojazdach elektrycznych i hybrydowych, oraz zaprezentowano podstawowe konfiguracje układów napędowych wykorzystujących spalinowe zespoły prądotwórcze do zwiększania zasięgu pojazdów z napędem elektrycznym. Na podstawie testów trakcyjnych zrealizowanych w rzeczywistych warunkach drogowych dla samochodu elektrycznego wspomaganego pracą spalinowych zespołów prądotwórczych (4 kW benzyna, 5,5 kW diesel) zainstalowanych na lekkiej przyczepie, opracowano model matematyczny układu w środowisku Modelica. Opracowany model matematyczny uwzględnia obciążenia dynamiczne działające na zespół pojazdów w ruchu wraz z elektrycznym układem napędowym wspomaganym przez spalinowy zespół prądotwórczy. Przedstawiono wyniki badań symulacyjnych dla wybranych profili trasy i prędkości jazdy. Przeprowadzono badania dla wybranych wartości współczynników stanu naładowania akumulatorów SOCON-OFF (ang. State Of Charge), mających kilkuprocentowy wpływ na zmniejszenie zużycia paliwa i emisji szkodliwych gazów do atmosfery przez silniki spalinowe zespołów prądotwórczych.
Rocznik
Strony
127--135
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Gdynia Maritime University, Department of Ship Automation, Morska 83 Str., 81-225 Gdynia
  • Gdynia Maritime University, Department of Ship Automation, Morska 83 Str., 81-225 Gdynia
Bibliografia
  • 1. U.S. Environmental Protection Agency. Climate Change Indicators in the United States, 2016, 2016. https://www.epa.gov/sites/production/files/201608/documents/climate_indicators_2016.pdf.
  • 2. Zhang, Z.; Zhang, R.; Cescatti, A.; Wohlfahrt, G.; Buchmann, N.; Zhu, J.; Chen, G.; Moyano, F.; Pumpanen, J.; Hirano, T.; et al. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific reports 2017, 7, 3108, doi:10.1038/s41598017-03386-5.
  • 3. Carmeli, M.S.; Castelli-Dezza, F.; Galmarini, G.; Mastinu, G.; Mauri, M. A urban vehicle with very low fuel consumption: realization, analysis and optimization. In Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2014, 25 - 27 March 2014, Grimaldi Forum, MonteCarlo, Monaco. 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), MonteCarlo, 3/25/2014 - 3/27/2014; IEEE: Piscataway, NJ, 2014; pp 1–6.
  • 4. Pedro, L. BMW i3 was the most sold plug-in car in Europe last month - Push EVs. https://pushevs.com/2016/10/28/bmw-i3was-the-most-sold-plug-in-car-in-europe-last-month/ (accessed on 7 September 2018).
  • 5. Group, S. 2016: World’s first electric road opens in Sweden - Scania Group. http://www.scania.com/group/en/2016-worldsfirst-electric-road-opens-in-sweden/ (accessed on 10 May 2018).
  • 6. Mouli, G.R.C.; Venugopal, P.; Bauer, P. Future of electric vehicle charging. In 19th International Symposium on Power Electronics Ee 2017, Novi Sad, Serbia, October 19th-21st, 2017. 2017 International Symposium on Power Electronics (Ee), Novi Sad, 10/19/2017 - 10/21/2017; Electronics, I.S.o.P., Ed.; IEEE: [Piscataway, NJ], 2017; pp 1–7.
  • 7. Willsher, K. World's first solar panel road opens in Normandy village. https://www.theguardian.com/environment/2016/dec/22/ solarpanel-road-tourouvre-au-perche-normandy (accessed on 10 May 2018).
  • 8. Solouk, A.; Tripp, J.; Shakiba-Herfeh, M.; Shahbakhti, M. Fuel consumption assessment of a multi-mode low temperature combustion engine as range extender for an electric vehicle. Energy Conversion and Management 2017, 148, 1478–1496, doi:10.1016/j.enconman.2017.06.090.
  • 9. Wang, X.; Lv, H.; Sun, Q.; Mi, Y.; Gao, P. A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles. Energies 2017, 10, 204, doi:10.3390/en10020204.
  • 10. Jia, B.; Smallbone, A.; Zuo, Z.; Feng, H.; Roskilly, A.P. Design and simulation of a two- or four-stroke free-piston engine generator for range extender applications. Energy Conversion and Management 2016, 111, 289–298, doi:10.1016/j.enconman.2015.12.063.
  • 11. Heron, A.; Rinderknecht, F. Comparison of range extender technologies for battery electric vehicles. In EVER Monaco 2013, Ecological Vehicles & Renewable Energies International Conference & Exhibition : 27/30 March, Grimaldi Forum, Monaco. 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER 2013), Monte Carlo, 3/27/2013 - 3/30/2013; IEEE: [Piscataway, NJ], 2013; pp 1–6.
  • 12. Shah, R.M.A.; McGordon, A.; Amor-Segan, M.; Jennings, P. Micro Gas Turbine Range Extender - Validation Techniques for Automotive Applications. In Hybrid and Electric Vehicles Conference 2013 (HEVC 2013), IET, Date 6-7 Nov. 2013. Hybrid and Electric Vehicles Conference 2013 (HEVC 2013), London, UK, 6-7 Nov. 2013; Institution of Engineering and Technology: [Stevenage, UK], 2013; 9.6-9.6.
  • 13. Karvountzis-Kontakiotis, A.; Andwari, A.M.; Pesyridis, A.; Russo, S.; Tuccillo, R.; Esfahanian, V. Application of Micro Gas Turbine in Range-Extended Electric Vehicles. Energy 2018, 147, 351–361, doi:10.1016/j.energy.2018.01.051.
  • 14. Álvarez Fernández, R.; Corbera Caraballo, S.; Beltrán Cilleruelo, F.; Lozano, J.A. Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renewable and Sustainable Energy Reviews 2018, 81, 655–668, doi:10.1016/j.rser.2017.08.047.
  • 15. Aharon, I.; Shmilovitz, D.; Kuperman, A. Multimode power processing interface for fuel cell range extender in battery powered vehicle. Applied Energy 2017, 204, 572–581, doi:10.1016/j.apenergy.2017.07.043.
  • 16. Kere, L.J.; Kelouwani, S.; Agbossou, K.; Dube, Y. Improving Efficiency Through Adaptive Internal Model Control of Hydrogen-Based Genset Used as a Range Extender for Electric Vehicles. IEEE Trans. Veh. Technol. 2017, 66, 4716– 4726, doi:10.1109/TVT.2016.2570698.
  • 17. Dimitrova, Z.; Maréchal, F. Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender. Renewable Energy 2017, 112, 124–142, doi:10.1016/j.renene.2017.05.031.
  • 18. Napoli, G.; Micari, S.; Dispenza, G.; Di Novo, S.; Antonucci, V.; Andaloro, L. Development of a fuel cell hybrid electric powertrain: A real case study on a Minibus application. International Journal of Hydrogen Energy 2017, 42, 28034– 28047, doi:10.1016/j.ijhydene.2017.07.239.
  • 19. Fernández, R.Á.; Cilleruelo, F.B.; Martínez, I.V. A new approach to battery powered electric vehicles: A hydrogen fuelcell-based range extender system. International Journal of Hydrogen Energy 2016, 41, 4808–4819, doi:10.1016/j.ijhydene.2016.01.035.
  • 20. Kendall, M. Fuel cell development for New Energy Vehicles (NEVs) and clean air in China. Progress in Natural Science: Materials International 2018, 28, 113–120, doi:10.1016/j.pnsc.2018.03.001.
  • 21. Odeim, F.; Roes, J.; Heinzel, A. Power Management Optimization of a Fuel Cell/Battery/Supercapacitor Hybrid System for Transit Bus Applications. IEEE Trans. Veh. Technol. 2016, 65, 5783–5788, doi:10.1109/TVT.2015.2456232.
  • 22. Russer, J.A.; Haider, M.; Weigelt, M.; Becherer, M.; Kahlert, S.; Merz, C.; Hoja, M.; Franke, J.; Russer, P. A system for wireless inductive power supply of electric vehicles while driving along the route. In 2017 7th International Electric Drives Production Conference (EDPC). 2017 7th International Electric Drives Production Conference (EDPC), Würzburg, 12/5/2017 - 12/6/2017; IEEE, 2017 - 2017; pp 1–6.
  • 23. Guanetti, J.; Formentin, S.; Savaresi, S.M. Energy Management System for an Electric Vehicle With a Rental Range Extender: A Least Costly Approach. IEEE Trans. Intell. Transport. Syst. 2016, 17, 3022–3034, doi:10.1109/TITS.2016.2529962.
  • 24. Abdelhamid, M.; Pilla, S.; Singh, R.; Haque, I.; Filipi, Z. A comprehensive optimized model for on-board solar photovoltaic system for plug-in electric vehicles: energy and economic impacts. Int. J. Energy Res. 2016, 40, 1489–1508, doi:10.1002/er.3534.
  • 25. Xi, L.; Zhang, X.; Sun, C.; Wang, Z.; Hou, X.; Zhang, J. Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network. Energies 2017, 10, 1871, doi:10.3390/en10111871.
  • 26. Schneidereit, T.; Franke, T.; Günther, M.; Krems, J.F. Does range matter? Exploring perceptions of electric vehicles with and without a range extender among potential early adopters in Germany. Energy Research & Social Science 2015, 8, 198– 206, doi:10.1016/j.erss.2015.06.001.
  • 27. Rust, A.; Graf, B.J. NVH of Electric Vehicles with Range Extender. SAE Int. J. Passeng. Cars – Mech. Syst. 2010, 3, 860–867, doi:10.4271/2010-01-1404.
  • 28. Kruse, E.; Harrison, A. Active Vibration Control Technology for Electric Vehicles with Range Extender. ATZ Worldw 2015, 117, 14–19, doi:10.1007/s38311-015-0030-0.
  • 29. Kaneko, T.; Nomura, A.; Yang, W.-H.; Daisho, Y.; Kamiya, Y.; Sawada, N.; Yasukawa, M.; Takekoshi, F.; Tsushima, R. Optimization of engine control methods for range extendertype plug-in hybrid vehicles. In 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain : November 17-20, 2013. 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 11/17/2013 - 11/20/2013; IEEE: Piscataway, NJ, 2013; pp 1–8.
  • 30. Song, K.; Li, F.; Hu, X.; He, L.; Niu, W.; Lu, S.; Zhang, T. Multimode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm. Journal of Power Sources 2018, 389, 230–239, doi:10.1016/j.jpowsour.2018.04.024.
  • 31. Rogge, M.; Rothgang, S.; Sauer, D.U. Operating Strategies for a Range Extender Used in Battery Electric Vehicles. In 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), 15 - 18 Oct. 2013, Beijing, China. 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 10/15/2013 - 10/18/2013; IEEE: Piscataway, NJ, 2013; pp 1–5.
  • 32. Tan, F.X.; Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Palenschat, T.; Martinez-Botas, R.F. Analytical and Experimental Study of Micro Gas Turbine as Range Extender for Electric Vehicles in Asian Cities. Energy Procedia 2017, 143, 53–60, doi:10.1016/j.egypro.2017.12.647.
  • 33. Stawczyk, P.; Karyś, S., Three-Phase One-Branch Controlled Bridge Rectifier for Permanent Magnet AC Synchronous Generator. 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG), Bydgoszcz, POLAND, JUN 29-JUL 01, 2016; WOS:000389594400071.
  • 34. Agarwal, A.; Rodrigues, L.; Liu, D.; Lewis, A.G.J.; Akehurst, S.; Brace, C.J.; Kirkpatrick, G.; Ash, L. Thermal Management of a Low Cost Range Extender for Electric Vehicles. In 6th Hybrid and Electric Vehicles Conference (HEVC 2016). 6th Hybrid and Electric Vehicles Conference (HEVC 2016), London, UK, 2-3 Nov. 2016; Institution of Engineering and Technology, 2016.
  • 35. EP Tender. Range Extending Service for Electric Vehicles. http://eptender.com/en/ (accessed on 7 September 2018).
  • 36. The Beata Electric Motor Carrage Collection. ACP AC Propulsion LongRanger, Series Range Extending Trailer, Alan Cocconi ,RXT-G, Hybrid Trailer, EV Range Extender, GenSet.http://tzev.com/1992_1995_2001_acp_rxt-g_.html (accessed on 11 May 2018).
  • 37. Jung, C. Rinspeed Dock+Go. https://www.roadandtrack.com/ car-shows/geneva-auto-show/news/a18073/rinspeed-dockgo/ (accessed on 11 May 2018).
  • 38. Donato, A.; Dolara, P.; Thiel, C.; Spadaro, A.; Gkatzoflias, D.; Drossinos, Y. Individual mobility: From conventional to electric cars: Italy, 2015. http://publications.jrc.ec.europa.eu/repository/ bitstream/JRC97690/eur_27468_en_online_v3.pdf (accessed on 10 May 2018).
  • 39. Schmitt, B. Germany's Bundesrat Resolves End Of Internal Combustion Engine. https://www.forbes.com/sites/bertel schmitt/2016/10/08/germanys-bundesrat-resolves-end-ofinternal-combustion-engine/#3337b3cf60bd (accessed on 10 May 2018).
  • 40. Riotta, C. Norway is going to ban all gas-powered cars by 2025. http://www.businessinsider.com/norway-is-going-to-banall-gas-powered-cars-by-2025-2016-6?IR=T (accessed on 10 May 2018).
  • 41. Czech, P., Diagnose car engine exhaust system damage using bispectral analysis and radial basic function. International Conference on Computer, Networks and Communication Engineering (ICCNCE), Beijing, CHINA, MAY 23-24, 2013; WOS:000327761500078.
  • 42. Czech, P., Diagnosing a Car Engine Fuel Injectors' Damage. Communications in Computer and Information Science, 13th International Conference on Transport Systems Telematics (TST), Katowice, POLAND, OCT 23-26, 2013; WOS:000333684700030.
  • 43. The Beata Electric Motor Carrage Collection. ACP AC Propulsion Series Range Extending Trailer prototype. LongRanger III. Toyota Rav4-EV Hybrid prototype. Alan Cocconi. 2000 BEV (Battery Electric Vehicle). RXT-G. LongRanger. Hybrid Trailer. EV Range Extender. GenSet. http://tzev.com/2001_rxt-g_steering.html (accessed on 11 May 2018).
  • 44. Łebkowski, A. Exploitation tests of an electric powertrain with IGBT inverter for an EV Fiat Panda. Maszyny Elektryczne - Zeszyty Problemowe 2016, 25–30.
  • 45. Gabryelewicz, M. Chassis and body of motor vehicles; WKŁ: Warszawa, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09069095-dac8-4883-b76d-6605e5cff678
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.