PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Substituted Elements on Reflection Loss of Ba-Ferrite Nanoparticle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the rapid development of the information communication industries, it is expected that next-generation mobile communication devices in the data communication environment will be used at the same time in the L~X band (1–12 GHz). To mutual electric wave interference prevention, research on wave absorbers in L~X band is needed. In this paper, barium ferrite was researched as L~X band wave absorber. The Barium ferrite (BaM, Ba ferrite) substituted by divalent ions (Co2+, Cu2+, Ni2+, Zn2+) and tetravalent ion (Ti4+). The substituted Ba ferrite nanoparticles were fabricated by sol-gel process. Lattice parameter, particle size, magnetic properties, and reflection loss were analyzed by X-ray diffraction (X-RD), a Vibrating Sample Magnetometer (VSM), and a Network Analyzer. Lattice parameter of Ba ferrite was changed 0.0005 to 0.0078 Å in a-b direction, and 0.0187 to0.0445 Å in c-direction by substituted elements, and it influenced on magnetic anisotropy. In addition, Co-Ti substitution elements influenced that coercive force decrease 5,739 to 2,240 Oe. Moreover, reflection loss frequencies were shifted from 16.3 GHz to 14.4 and 17.4 GHz by substituted elements Co-Ti and Zn-Ti.
Twórcy
autor
  • Advanced Materials Science and Engineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Korea
autor
  • Advanced Materials Science and Engineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Korea
autor
  • Spin Engineering Physics Team, Korea Basic Science Institute, Daejeon, Korea
autor
  • Advanced Materials Science and Engineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Korea
Bibliografia
  • [1] Y. Naito, K. Suetake, IEEE. T. Microw, Theory. MTT-19, 65-72 (1971).
  • [2] M. Mohebbi, K. Ebnabbasi, C. Vittoria, IEEE. T. Magn. 49, 4207-4209 (2013).
  • [3] T. Tsutaoka, N. Koga, J. Magn. Magn. Mater. 325, 36-41 (2013).
  • [4] S. Kanagesan, S. Jesurani, R. Velmurugan, T. Kalaivani, J. Mater. Sci-Mater. El. 23, 952-925 (2012).
  • [5] L. Jia, H. Zhang, S. Yin, F. Bai, B. Liu, Q. Wen, J. Shen, J. Appl. Phys. 109, 07E317-1-07E317-3 (2011).
  • [6] C. Li, B. Huang, J. Wang, J. Mater. Sci. 48, 1702-1710 (2013).
  • [7] H.M. Khan, M.U. Islam, Y. Xu, M.A. Iqbal, I. Ali, J. Alloys Compd. 589, 258-262 (2014)
  • [8] S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, J. Magn. Magn. Mater. 350, 23-29 (2014)
  • [9] Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Solid. State. Commun. 152, 894-897(2012).
  • [10] E.D. Solovéva, E.V. Pashkova, A.E. Perekos, A.G. Belous, Inorg. Mater. 48, 1147-1152 (2012).
  • [11] C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Mater. Res. Bull. 43, 176-184 (2008).
  • [12] L.S.I. Liyanage, S. Kim, Y. Hong, J. Park, S.C. Erwin, Cond-mat. Mtrl-sci, 1209.5143v2 (2013).
  • [13] J. Smit, H.P.J. Wijn, Philips Technical Library, Ferrites, London, 1959.
  • [14] E.P. Wohlfarth, North-Holland Pub, Ferromagnetic Materials 3, Amsterdam (1982).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0905ea74-b437-49c3-bb5c-ca92ea54c8ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.