Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Heat losses caused by ventilation systems significantly affect energy consumption in buildings. Therefore, it seems reasonable to look for solutions to improve the efficiency of heat recovery and storage in ventilation systems. One example of such solutions are thermal energy storage systems using phase change materials (PCM), which can be a way to improve the thermal performance of a building. Utilizing the increased energy absorption capacity of phase transition temperatures through phase change materials, increases the efficiency of energy accumulation and subsequent release. The use of sensible and latent heat of PCM materials can significantly affect the efficiency of heat recovery and storage in ventilation systems. The paper presents an overview of various applications PCM in ventilation systems. The study presents the method of conducting selected research and the results achieved.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
15--27
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
autor
- Kielce University of Technology al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- Annunziata E., Frey M., Rizzi F., 2013, Towards nearly zero-energy buildings: the state-of-art of national regulations in Europe. Energy 57, pp. 125-133, https://doi.org/10.1016/j.energy.2012.11.049.
- Baetens R., Jelle B.P., Gustavsen A., 2010, Phase change materials for building applications: A state-of-the-art review. Energy and buildings, 42(9), pp. 1361-1368, https://doi.org/10.1016/j.enbuild.2010.03.026.
- Chen X., Zhang Q., Zhai Z.J., 2016, Energy saving potential of a ventilation system with a latent heat thermal energy storage unit under different climatic conditions. Energy and Buildings, 118, pp. 339-349. https://doi.org/10.1016/j.enbuild.2016.02.049.
- Dallaire J., Hassan H.M.A., Bjernemose J.H., Hansen M.P.R., Lund I., Veje C.T., 2022, Performance analysis of a dual-stack Air-PCM heat exchanger with novel air flow configuration for cooling applications in buildings. Building and Environment, 223, 109450. https://doi.org/10.1016/j.buildenv.2022.109450.
- Dechesne B., Gendebien S., Martens J., Lemort V., 2014, Designing and testing an air-PCM heat exchanger for building ventilation application coupled to energy storage. https://docs.lib.purdue.edu/iracc/1531/ (dostęp z dnia 15.11.2022).
- Hu Y., Heiselberg P.K., Drivsholm C., Søvsø A.S., Vogler-Finck P.J., Kronby K., 2022, Experimental and numerical study of PCM storage integrated with HVAC system for energy flexibility. Energy and Buildings, 255, 111651. https://doi.org/10.1016/j.enbuild.2021.111651.
- Jradi M., Arendt K., Sangogboye F.C., Mattera C.G., Markoska E., Kjaergaard M.B., Veje C.T., Jorgensen B.N., 2018, ObepME: an online building energy performance monitoring and evaluation tool to reduce energy performance gaps. Energ Buildings 166, pp. 196-209. https://doi.org/10.1016/j.enbuild.2018.02.005.
- Kauranen P., Peippo K., Lund P.D., 1991, Anorganic PCM storage-system with adjustable melting temperature. SolEnergy 46(5), pp. 275-8. https://doi.org/10.1016/0038-092X(91)90094-D.
- Liddament M.W., Orme M., 1998, Energy and ventilation. App l Therm Eng 18(11), pp. 1101-9. https://doi.org/10.1016/S1359-4311(98)00040-4.
- Ljungdahl V., Taha K., Dallaire J., Kieseritzky E., Pawelz F., Jradi M., Veje C., 2021, Phase change material based ventilation module-Numerical study and experimental validation of serial design. Energy, 234, 121209. https://doi.org/10.1016/j.energy.2021.121209.
- Orme M., 2001, Estimates of the energy impact of ventilation and associated financial expenditures. Energy Build 33(3), pp. 199-205. https://doi.org/10.1016/S0378-7788(00)00082-7.
- Perez-Lombard L., Ortiz J., Pout C., 2008, A review on buildings energy consumption information. Energy Build 40(3), pp. 394-8. https://doi.org/10.1016/j.enbuild.2007.03.007.
- Stritih U., Charvat P., Klimes L., Osterman E., Ostry M., Butala V., 2018, PCM thermal energy storage in solar heating of ventilation air - Experimental and numerical investigations. Sustainable cities and society, 37, pp. 104-115. https://doi.org/10.1016/j.scs.2017.10.018.
- Sun W., Huang R., Ling Z., Fang X., Zhang Z., 2020, Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature. Renewable Energy, 145, pp. 1608-1619. https://doi.org/10.1016/j.renene.2019.07.089.
- Takeda S., Nagano K., Mochida T., Shimakura K., 2004, Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Solar Energy, 77(3), pp. 329-338. https://doi.org/10.1016/j.solener.2004.04.014.
- Tommerup H., Svendsen S., 2006, Energy savings in Danish residential building stock. Energy Build 38(6), pp. 618-26. https://doi.org/10.1016/j.enbuild.2005.08.017.
- Veje C.T., Jradi M., Lund I. et al., 2019, NeGeV: next generation energy efficient ventilation system using phase change materials. Energy Inform 2. https://doi.org/10.1186/s42162-019-0067-1.
- Yang D., Shi R., Wei H., Du J., Wang J., 2019, Investigation of the performance of a cylindrical PCM-to-air heat exchanger (PAHE) for free ventilation cooling in fluctuating ambient environments. Sustainable Cities and Society, 51, 101764. https://doi.org/10.1016/j.scs.2019.101764.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09037369-72d2-44e4-8246-561bc552ce54