PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive and Tensile Strength of Nano-clay Stabilised Soil Subjected to Repeated Freeze–Thaw Cycles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improvement of the mechanical properties of clayey soils by additional elements to enhance the strength under numerous freezing and thawing cycles has been considered as a serious concern for engineering applications in cold regions. The objective of the current study is to investigate the effect of nano-clay as a stabiliser on the mechanical properties of clay. To this end, the clay specimens were prepared by adding various percentages of nano-clay ranging from 0.5% to 3% by dry weight of soil and were experimentally tested under the uniaxial compression and tensile splitting tests under different curing times (0, 7 and 28 days) after experiencing various freeze–thaw cycles ranging from 0 to 11. It can be concluded from the results that nano-clay particles may be used as a stabiliser in geotechnical applications to improve soil property. The results indicate that the optimum moisture content (OMC) of specimens increases and the maximum dry density (MDD) decreases with the increasing nano-clay content. The specimens containing about 1% nano-clay recorded maximum values of unconfined compressive strength (UCS) as well as tensile strength. For example, the addition 1% nano-clay increased the UCS and tensile values of clay specimens under the curing time of 28 days by 34% and 247%, respectively. In addition, the long-term durability of specimens against freeze–thaw cycles increases further with the addition of nano-clay content ranging from 2% to 3%.
Wydawca
Rocznik
Strony
221--230
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
  • Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
  • Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
autor
  • Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
  • [1] Abbasi, N., Farjad, A., & Sepehri, S. (2018). The Use of Nano-clay Particles for Stabilization of Dispersive Clayey Soils. Geotechnical and Geological Engineering, 36(1), 327–335. https://doi.org/10.1007/s10706-017-0330-9
  • [2] Asgari, M. R., Baghebanzadeh Dezfuli, A., & Bayat, M. (2015). Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, 8(3), 1439–1452. https://doi.org/10.1007/s12517-013-1173-1
  • [3] Avazeh, A., & Asakereh, A. (2017). The Effects of Nano Clay on Dispersive Soils Behavior (Case Study of Minab City. Amirkabir J. Civil Eng, 49(3), 503–512. https://doi.org/10.22060/ceej.2016.868
  • [4] Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2009). Heterogeneous Photocatalysis Applied to Concrete Pavement for Air Remediation. Nanotechnology in Construction 3, 409–414. https://doi.org/10.1007/978-3-642-00980-8_56
  • [5] Bozbey, I., Kelesoglu, M. K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K., & Oztoprak, S. (2018). Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay. Cold Regions Science and Technology, 151, 323–334. https://doi.org/10.1016/j.coldregions.2018.03.023
  • [6] Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nano-clays: applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161–176. https://doi.org/10.1180/claymin.2009.044.2.161
  • [7] Chaduvula, U., Desai, A. K., & Solanki, C. H. (2014). Application of Triangular Polypropylene Fibres on Soil Subjected to Freeze-Thaw Cycles. Indian Geotechnical Journal, 44(3), 351–356. https://doi.org/10.1007/s40098-013-0088-9
  • [8] Changizi, F., & Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 62–71. https://doi.org/10.1680/jgrim.15.00026
  • [9] Choobbasti, A. J., Samakoosh, M. A., & Kutanaei, S. S. (2019). Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials, 211, 1094–1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306
  • [10] Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286–295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • [11] Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. https://doi.org/10.1016/j.coldregions.2018.07.004
  • [12] Dusenkova, I., Stepanova, V., Vecstaudza, J., Lakevics, V., Malers, J., & Berzina-Cimdina, L. (2013). Rheological properties of Latvian illite clays. Acta Geodynamica et Geomaterialia, 10(4), 459–464. https://doi.org/10.13168/AGG.2013.0046
  • [13] Edil, T. B., & Cetin, B. (2018). Freeze-thaw performance of chemically stabilized natural and recycled highway materials. Sciences in Cold and Arid Regions, 7(5), 482–491. https://doi: 10.3724/SP.J.1226.2015.00482.
  • [14] Ghazavi, M., & Roustaei, M. (2013). Freeze-thaw performance of clayey soil reinforced with geotextile layer. Cold Regions Science and Technology, 89, 22–29. https://doi.org/10.1016/j.coldregions.2013.01.002
  • [15] Hussien, R. S., & Albusoda, B. S. (2023). Effect of permeation grouting with nano-materials on shear strength of sandy soil: An experimental study. In AIP Conference Proceedings (Vol. 2651, No. 1, p. 020024). AIP Publishing LLC. https://doi.org/10.1063/5.0132680
  • [16] Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21–29. https://doi.org/10.1016/j.coldregions.2012.05.012
  • [17] Jassem, S., & Tabarsa, A. (2015). Effect of Adding Nano-clay on the Mechanical Behaviour of Fine-grained Soil Reinforced with Polypropylene Fibers. Journal of Structural Engineering and Geotechnics, 5(2), 59–67. http://www.qjseg.ir/article_754.html
  • [18] Kalhor, A., Ghazavi, M., Roustaei, M., & Mirhosseini, S. M. (2019). Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 161, 129–136. https://doi.org/10.1016/j.coldregions.2019.03.011
  • [19] Kalkan, E., Akbulut, S., Tortum, A., & Celik, S. (2009). Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology, 58(7), 1429–1440. https://doi.org/10.1007/s00254-008-1645-x
  • [20] Kananizadeh, N., Ebadi, T., Ehsan, S., Khoshniat, S. A., & Khoshniat, A. (2011). Behavior of Nano-clay as an Additive in order to Reduce Kahrizak Landfill Clay Permeability. Proceeding of 2nd International Conference on Environmental Science and Technology, 6, 26–28. http://www.ipcbee.com/vol6/no1/12-F00023.pdf
  • [21] Konrad, J. M. (1989). Physical processes during freeze-thaw cycles in clayey silts. Cold Regions Science and Technology, 16(3), 291–303. https://doi.org/10.1016/0165-232X(89)90029-3
  • [22] Liu, H., Lyu, X., Wang, J., He, X., & Zhang, Y. (2020). The dependence between shear strength parameters and microstructure of subgrade soil in seasonal permafrost area. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12031264
  • [23] Liu, J., Chen, Z., Kanungo, D. P., Song, Z., Bai, Y., Wang, Y., Li, D., & Qian, W. (2019). Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer. Engineering Geology, 252(September 2018), 125–135. https://doi.org/10.1016/j.enggeo.2019.03.003
  • [24] Mohammadi, Mina, & Choobbasti, A. J. (2018). The effect of self-healing process on the strength increase in clay. Journal of Adhesion Science and Technology, 32(16), 1750–1772. https://doi.org/10.1080/01694243.2018.1445070
  • [25] Mohammadi, Mostafa, & Niazian, M. (2013). Investigation of Nano-clay effect on geotechnical properties of rasht clay. International Journal of Advanced Scientific and Technical Research, 3(3), 37–46. http://rspublication.com/ijst/june13/5.pdf
  • [26] Movahedan, M., Abbasi, N., & Keramati, M. (2012). Wind erosion control of soils using polymeric materials. Eurasian Journal of Soil Science (Ejss), 1(2), 81 – 86. https://doi.org/10.18393/ejss.23002
  • [27] Olgun, M. (2013). The effects and optimization of additives for expansive clays under freeze-thaw conditions. Cold Regions Science and Technology, 93, 36–46. https://doi.org/10.1016/j.coldregions.2013.06.001
  • [28] Örnek, M., Atahan, A. O., Türedi, Y., Erdem, M. M., & Büyük, M. (2019). Soil based design of highway guardrail post depths using pendulum impact tests. Acta Geotechnica Slovenica, 16(2), 77–89. https://doi.org/10.18690/actageotechslov.16.2.77-89.2019
  • [29] Ornek, M., Demir, A., Yildiz, A., & Laman, M. (2012). Numerical analysis of circular footings on natural clay stabilized with a granular fill. Acta Geotechnica Slovenica, 9(1), 61–75.
  • [30] Padidar, M., Jalalian, A., Asgari, K., Abdouss, M., Najafi, P., Honarjoo, N., & Fallahzade, J. (2016). The impacts of nano-clay on sandy soil stability and atmospheric dust control. In Agriculturae Conspectus Scientificus (Vol. 81, Issue 4). https://hrcak.srce.hr/index.php?id_clanak_jezik=264558&show=clanak
  • [31] Pan, R., Yang, P., Shi, X., & Zhang, T. (2023). Effects of freeze–thaw cycles on the shear stress induced on the cemented sand–structure interface. Construction and Building Materials, 371, 130671. https://doi.org/10.1016/j.conbuildmat.2023.130671.
  • [32] Qi, J., Vermeer, P. A., & Cheng, G. (2006). A review of the influence of freeze-thaw cycles on soil geotechnical properties. In Permafrost and Periglacial Processes (Vol. 17, Issue 3, pp. 245–252). John Wiley & Sons, Ltd. https://doi.org/10.1002/ppp.559
  • [33] Rajczakowska, M., & Łydzba, D. (2016). Durability of crystalline phase in concrete microstructure modified by the mineral powders: Evaluation by nanoindentation tests. Studia Geotechnica et Mechanica, 38(1), 65–74. https://doi.org/10.1515/sgem-2016-0007
  • [34] Rajczakowska, M., Stefaniuk, D., & Łydżba, D. (2015). Microstructure Characterization by Means of X-ray Micro-CT and Nanoindentation Measurements. Studia Geotechnica et Mechanica, 37(1), 75–84. https://doi.org/10.1515/sgem-2015-0009
  • [35] Rezaei-Hosseinabadi, M. J., Bayat, M., Nadi, B., & Rahimi, A. (2021). Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil. Geomechanics and Geoengineering, 00(00), 1–11. https://doi.org/10.1080/17486025.2021.1940315
  • [36] Roustaei, M., Ghazavi, M., & Aliaghaei, E. (2016). Application of tire crumbs on mechanical properties of a clayey soil subjected to freeze-thaw cycles. Scientia Iranica, 23(1), 122–132. https://doi.org/10.24200/sci.2016.2103
  • [37] Roustaei, Mahya, Eslami, A., & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127–137. https://doi.org/10.1016/j.coldregions.2015.09.011
  • [38] Saadat, M., & Bayat, M. (2022). Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 17(1), 80–91. https://doi.org/10.1080/17486025.2019.1699668
  • [39] Hadi Sahlabadi, S., Bayat, M., Mousivand, M., & Saadat, M. (2021). Freeze–thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. Journal of Materials in Civil Engineering, 33(9), 04021232. https://doi.org/10.1061/(ASCE)MT.1943-5533.000h3905.
  • [40] Sahin, R., & Oltulu, M. (2008). New Materials for Concrete Technology: Nano Powders. 33rd Conference on OUR WORLD IN CONCRETE & STRUCTURES.
  • [41] Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2021). Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste. KSCE Journal of Civil Engineering, 25(6), 1974–1984. https://doi.org/10.1007/s12205-021-0953-5
  • [42] Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2022). Prediction of unconfined compressive strength and California bearing capacity of cement- or lime-pozzolan-stabilised soil admixed with crushed stone waste. Geomechanics and Geoengineering, 00(00), 1–12. https://doi.org/10.1080/17486025.2022.2040606
  • [43] Sameni, A., Pourafshary, P., Ghanbarzadeh, M., & Ayatollahi, S. (2015). Effect of nanoparticles on clay swelling and migration. Egyptian Journal of Petroleum, 24(4), 429–437. https://doi.org/10.1016/j.ejpe.2015.10.006
  • [44] Sharo, A. A., & Alawneh, A. S. (2016). Enhancement of the Strength and Swelling Characteristics of Expansive Clayey Soil Using Nano-Clay Material. Geotechnical Special Publication, 2016-Janua(269 GSP), 451–457. https://doi.org/10.1061/9780784480120.046
  • [45] Shibi, T., & Kamei, T. (2014). Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Regions Science and Technology, 106–107, 36–45. https://doi.org/10.1016/j.coldregions.2014.06.005
  • [46] Sivrikaya, O., Yavascan, S., & Cecen, E. (2014). Effects of ground granulated blastfurnace slag on the index and compaction parameters of clayey soils. Acta Geotechnica Slovenica, 11(1), 19–27.
  • [47] Steiner, A., Vardon, P. J., & Broere, W. (2018). The influence of freeze-thaw cycles on the shear strength of illite clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 171(1), 16–27. https://doi.org/10.1680/jgeen.16.00101
  • [48] Szostak-Chrzanowski, A., & Chrzanowski, A. (2014). Study of natural and man-induced ground deformation in mackenzie delta region. Acta Geodynamica et Geomaterialia, 11(2), 117–123. https://doi.org/10.13168/AGG.2013.0060
  • [49] Taha, M. R., & Taha, O. M. E. (2012). Influence of nano-material on the expansive and shrinkage soil behavior. Journal of Nanoparticle Research, 14(10), 1–13. https://doi.org/10.1007/s11051-012-1190-0
  • [50] Thomas, S., Chandrakaran, S., & Sankar, N. (2023). Effect of Nano-calcium carbonate on the Geotechnical and Microstructural Characteristics of Highly Plastic Paddy Clay. Arabian Journal for Science and Engineering, 1–13. https://doi.org/10.1007/s13369-023-07679-y
  • [51] Truty, A., & Obrzud, R. (2015). Improved Formulation of the Hardening Soil Model in the Context of Modeling the Undrained Behavior of Cohesive Soils. Studia Geotechnica et Mechanica, 37(2), 61–68. https://doi.org/10.1515/sgem-2015-0022
  • [52] Turkoz, M., Savas, H., Acaz, A., & Tosun, H. (2015). The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Applied Clay Science, 101, 1–9. https://doi.org/10.1016/j.clay.2014.08.007
  • [53] Vaníček, I. (2013). The importance of tensile strength in geotechnical engineering. Acta Geotechnica Slovenica, 10(1), 5–17.
  • [54] Yilmaz, F., Kamiloʇlu, H. A., & Şadoʇlu, E. (2015). Soil stabilization with using waste materials against freezing thawing effect. Acta Physica Polonica A, 128(2), 392–394. https://doi.org/10.12693/APhysPolA.128.B-392
  • [55] Zahedi, M., Sharifipour, M., Jahanbakhshi, F., & Bayat, R. (2014). Nano-clay Performance on Resistance of Clay under Freezing Cycles. Journal of Applied Sciences and Environmental Management. https://www.ajol.info/index.php/jasem/article/view/109900
  • [56] Zhang, D., Zhou, C. H., Lin, C. X., Tong, D. S., & Yu, W. H. (2010). Synthesis of clay minerals. In Applied Clay Science (Vol. 50, Issue 1, pp. 1–11). Elsevier. https://doi.org/10.1016/j.clay.2010.06.019
  • [57] Waleed, M., Liaqat, N., Jamil, M. A. B., Khalid, R. A., & Jamil, S. M. (2023). Unconfined compressive strength and freeze-thaw behavior of silty clay soils treated with bio-enzyme. Arabian Journal of Geosciences, 16(4), 1–11. https://doi.org/10.1007/s12517-023-11375-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0902bf9a-cde0-4503-89e5-3c66aa5c2dd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.