PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic analysis of a space truss by means of multidimensional variable description

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Probabilistyczna analiza przestrzennej kratownicy opisanej wielowymiarową zmienną losową
Języki publikacji
EN
Abstrakty
EN
Probabilistic analysis of a space truss is presented in the paper. Reliability of such a structure is sensitive to geometrical and material imperfections. The objective of this paper is to present a variant of the point estimate method (PEM) to determine mean values and standard deviations of limit loads of engineering structures. The main advantage presented by this method is the small number of sample calculations required to obtain estimators of investigated parameters. Thus the method is straightforward, requiring only preliminaries of probability theory. This approach is illustrated by limit state analysis of a space truss, considering geometric and material imperfections. The calculations were performed for different random models, so the influence of random parameters on the limit load of the truss can be determined. A realistic snow load was imposed.
PL
W pracy przedstawiono probabilistyczną analizę kratownicy przestrzennej. Obciążenia graniczne tego typu konstrukcji są wrażliwe na odchyłki geometryczne oraz zmiany parametrów materiałowych. W obliczeniach niezawodności stosowanych jest wiele metod: metoda Monte Carlo, metody redukujące liczbę realizacji (np. metoda próbkowania warstwowego i hipersześcianu łacińskiego), metoda powierzchni odpowiedzi, sieci neuronowych i inne. Metoda Monte Carlo nie narzuca żadnych ograniczeń na analizowane problemy ale jej zastosowanie wymaga czasochłonnych obliczeń. Z kolei efektywne metody redukcyjne podlegają trudnym do zdefiniowania ograniczeniom. Często stosowane są tzw. metody pierwszego i drugiego rzędu (FORM, SORM), jednakże w praktyce znajdują one zastosowanie jedynie w określonej klasie zagadnień. Efektywne rozwiązanie można też uzyskać wykorzystując metodę estymacji rozkładem dyskretnym (PEM – Point Estimate Method).
Rocznik
Strony
99--123
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering Technical University of Gdańsk
autor
  • Faculty of Civil and Environmental Engineering Technical University of Gdańsk
  • Faculty of Architecture Technical University of Gdańsk
Bibliografia
  • 1. G. B. Baecher, J. T. Christian, Reliability and statistics in geotechnical engineering. Chichester: John Wiley & Sons, 2003.
  • 2. N. Bakhary, H. Hao, A. J. Deeks, “Damage detection using artificial neural network with consideration of uncertainties”, Engineering Structures. 29(1), 2007, pp. 2806–2815.
  • 3. E. Bielewicz, J. Górski, “Shell with random geometric imperfections. Simulation-based approach”, International Journal of Non-linear Mechanics 37, 4-5, 2002, pp. 777-784.
  • 4. J. T. Christian, G. B. Baecher, “Point-estimate method as numerical quadrature”, Journal of Geotechnical and Geoenvironmental Engineering. Vol. 125, No. 9, 1999, pp. 779-786.
  • 5. J. T. Christian, G. B. Baecher, “The point-estimate method with large numbers of variables”, Int. J. Numer. Anal. Meth. Geomech. 26, 2002, pp. 1515–1529.
  • 6. L. J. Connor, M. S. Diederichs, “Reliability based approach to tunnel lining design using a modified point estimate method”, International Journal of Rock Mechanics and Mining. Vol. 60, 2013, pp. 263–276.
  • 7. M. Y. Fattah, “Reliability-based design procedure of axially loaded piles”, Journal of Engineering. 16(1), 2010, pp. 4462–4477.
  • 8. S. Franceschini, M. Marani, C. Tsai, F. Zambon, “A Perturbance Moment Point Estimate Method for uncertainty analysis of the hydrologic response”, Advances in Water Resources. 40, 2012. pp. 46–53.
  • 9. W. Gibson, “Probabilistic methods for slope analysis and design”, Australian Geomechanics. 46(3), 2011, pp. 1-11.
  • 10. M. E. Harr, “Probabilistic estimates for multivariate analyses”, Appl. Math. Modelling, 13(5), 1989, pp. 313–318.
  • 11. H. P. Hong, “An efficient point estimate method for probabilistic analysis”, Reliability Engineering and System Safety. 59(3), 1998, pp. 261-267.
  • 12. S. H. Lee, B. M. Kwak, “Response surface augmented moment method for efficient reliability analysis”, Structural Safety 28, 2006, pp. 261–272.
  • 13. H. Li, Z. Lu, Y. Zhang, “Probabilistic strength analysis of bolted joints in laminated composites using point estimate method”, Composite Structures 88, 2009, pp. 202–211.
  • 14. H.S. Li, “Reliability-based design optimization via high order response surface method”, Journal of Mechanical Science and Technology. 27 (4), 2013, pp. 1021-1029.
  • 15. N. C. Lind, “Modelling uncertainty in discrete dynamical systems”, Appl. Math. Modelling, 7(3), 1983, pp. 146–152.
  • 16. N. P. López-Acosta, G. Auvinet, “Uncertainty in analyses of one-dimensional steady-state seepage through random porous media”, Probabilistic Engineering Mechanics 26, 2011, pp. 501–510.
  • 17. D. Park, H. M. Kim, D. W. Ryu, B. H. Choi, K. C. Han, “Probability-based structural design of lined rock caverns to resist high internal gas pressure”, Engineering Geology, 153, 2013, pp. 144–151.
  • 18. MSC Nastran for Windows. Version 2001. MSC Software Corporation. Los Angeles. USA 2001.
  • 19. S. Nowak, K. R. Collins, Reliability of structures. McGraw-Hill Higher Education 2000.
  • 20. J. Przewłócki, Problemy stochastycznej mechaniki gruntów – ocena niezawodności. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2006.
  • 21. J. Przewłócki, J. Górski, P. Sorn, “The point estimate method in a reticulated shell reliability analysis”, Lightweight Structures in Civil Engineering – IASS Contemporary Problems. Olsztyn, 2013, pp. 104–109.
  • 22. B. Qu, X. Gou, H. Chi, M. Pollino, “Probabilistic evaluation of effect of column stiffness on seismic performance of steel plate shear walls”, Engineering Structures. 43, 2012, pp. 169–179.
  • 23. G. Rakowski, Z. Kacprzyk, Metoda elementów skończonych w mechanice konstrukcji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1993.
  • 24. E. Rosenblueth, “Point estimates for probability moments”, Proc. Nat. Acad. of Sci. 72 (10), 1975, pp. 3812–3814.
  • 25. S. Sayed, G. R. Dodagoudar, K. Rajagopal, “Reliability analysis of reinforced soil walls under static and seismic forces”, Geosynthetics International, 15(4), 2008, pp. 246 – 257.
  • 26. R. Suchomel, D. Mašín, “Probabilistic analyses of a strip footing on horizontally stratified sandy deposit using advanced constitutive model”, Computers and Geotechnics. 38(3), 2011, pp. 363–374.
  • 27. J. Tejchman, J. Górski, “Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity”, International Journal for Numerical and Analytical Methods in Geomechanics, 32, 1, 2008, pp. 81-107.
  • 28. J.P. Wang, D. Huang, “Rosen Point: A Microsoft Excel-based program for the Rosenblueth point estimate method and an application in slope stability analysis”, Computers and Geosciences. 48, 2012, pp. 239–243.
  • 29. Y.H. Zhao, H.M. Ang, “System Reliability Assessment by Method of Moments”, Journal of Structural Engineering, ASCE, 129(10), 2003, pp. 1341-1349.
  • 30. L. Zhe, X. Feipeng, H. Shaowei, Y. Yanshuang, “Probabilistic analysis on fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement”, Construction and Building Materials. 41, 2013, pp. 401–410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09010650-3550-4195-ac7c-352849530405
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.