Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Na całym świecie 39 proc. dorosłych ma nadwagę, 13 proc. jest otyłych, a 9 proc. ma niedowagę. Obecne normy dotyczące warunków cieplnych środowiska wewnętrznego opracowane zostały dla osób o normalnej wadze, mogą zatem ignorować prawie 60 proc. populacji. Może to mieć znaczący wpływ na komfort i produktywność użytkowników obiektów oraz zużycie energii przez budynki. Oprócz tego, wykorzystywane w normach modele odczuć cieplnych (model przewidujący średnią ocenę odczuć cieplnych (Predicted Mean Vote – PMV) oraz modele adaptacyjne) nie nadają się do przewidywania indywidualnych odczuć cieplnych, gdyż opracowane zostały dla średniej populacji i nie uwzględniają indywidualnych czynników. Ponadto, oba modele nie dostosowują się do zmieniających się warunków ani nie uwzględniają nowych czynników, np. zmiany preferencji użytkowników. W pierwszym etapie prac, wykonano badania w komorze klimatycznej mające na celu sprawdzenie czy i w jaki sposób wskaźnik masy ciała (Body Mass Index – BMI) jest powiązany z komfortem cieplnym, odczuciami i preferencjami oraz parametrami fizjologicznymi dla typowych warunków termicznych występujących w pomieszczeniu. W badaniach uczestniczyło 76 osób we wszystkich kategoriach wskaźnika BMI – od 17 do 37 kg/m2. Każdy uczestnik przeszedł te same cztery sesje w różnej, średniej temperaturze operacyjnej: 19,9°C, 22,4°C, 25,3°C i 28,2o°C. Uzyskaliśmy subiektywne informacje zwrotne od uczestników na temat ich wrażeń termicznych i preferencji, wrażeń i preferencji dotyczących wilgotności, oceny komfortu cieplnego i postrzegania jakości powietrza. Zmierzyliśmy również temperaturę skóry, ciśnienie krwi, tętno, poziom glukozy we krwi, wagę, wzrost, obwód talii i bioder oraz skład ciała. Ogólnie rzecz biorąc, nie stwierdzono istotnego wpływu BMI na odczucie termiczne. Jednak uczestnicy z nadwagą i otyłością preferowali niższą temperaturę w porównaniu z uczestnikami z prawidłową wagą i niedowagą, co może wskazywać na praktyczne zastosowanie w strategiach kontroli warunków cieplnych w budynkach.
Wydawca
Rocznik
Tom
Strony
12--16
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Katedra Ogrzewnictwa, Wentylacji i Techniki Odpylania, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Gliwice
autor
- Berkeley Education Alliance for Research in Singapore
autor
- Center for the Built Environment, University of California Berkeley
Bibliografia
- [1] M. Frontczak, S. Schiavon, J. Goins, E. Arens, H. Zhang, P. Wargocki, Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design, Indoor Air. 22 (2012) 119–131. https:/doi.org/10.1111/j.1600-0668.2011.00745.x.
- [2] P. Wargocki, O. Seppänen, eds., Indoor environment and productivity in office environment, Federation of European Heating, Ventilation and Air-conditioning Associations, Brussels, Belgium, 2006.
- [3] K.W. Tham, H.C. Willem, Room air temperature affects occupants’ physiology, perceptions and mental alertness, Build. Environ. 45 (2010) 40–44. https:/doi. org/10.1016/j.buildenv.2009.04.002.
- [4] A. Wagner, E. Gossauer, C. Moosmann, Th. Gropp, R. Leonhart, Thermal comfort and workplace occupant satisfaction—Results of field studies in German low energy office buildings, Energy Build. 39 (2007) 758–769. https:/doi. org/10.1016/j.enbuild.2007.02.013.
- [5] J.G. Allen, P. MacNaughton, J.G.C. Laurent, S.S. Flanigan, E.S. Eitland, J.D. Spengler, Green Buildings and Health, Curr. Environ. Health Rep. 2 (2015) 250–258. hpttplns:/y/dcoih.org/10.1007/s40572-015-0063-y.
- [6] A. Leaman, B. Bordass, Productivity in buildings: the ‘killer’ variables, Build. Res. Inf. 27 (1999) 4–19. https:/doi.org/10.1080/096132199369615.
- [7] A. Lipczynska, S. Schiavon, L.T. Graham, Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics, Build. Environ. 135 (2018) 202–212. https:/doi.org/10.1016/j.buildenv.2018.03.013.
- [8] Y. Geng, W. Ji, B. Lin, Y. Zhu, The impact of thermal environment on occupant IEQ perception and productivity, Build. Environ. 121 (2017) 158–167. https:/ doi.org/10.1016/j.buildenv.2017.05.022.
- [9] K.L. Jensen, J. Toftum, P. Friis-Hansen, A Bayesian Network approach to the evaluation of building design and its consequences for employee performance and operational costs, Build. Environ. 44 (2009) 456–462. https:/doi.org/10.1016/j.buildenv.2008.04.008.
- [10] R. Kosonen, F. Tan, Assessment of productivity loss in air-conditioned buildings using PMV index, Energy Build. 36 (2004) 987–993. https:/doi.org/10.1016/j. enbuild.2004.06.021.
- [11] L. Lan, P. Wargocki, Z. Lian, Quantitative measurement of productivity loss due to thermal discomfort, Energy Build. 43 (2011) 1057–1062. https:/doi. org/10.1016/j.enbuild.2010.09.001.
- [12] S.C. Sekhar, Thermal comfort in air-conditioned buildings in hot and humid climates – why are we not getting it right?, Indoor Air. 26 (2016) 138–152. https:/doi.org/10.1111/ina.12184.
- [13] L. Zagreus, C. Huizenga, E. Arens, D. Lehrer, Listening to the occupants: a Web‐based indoor environmental quality survey, Indoor Air. 14 (2004) 65–74. https:/doi.org/10.1111/j.1600-0668.2004.00301.x.
- [14] H.Zhang, E.Arens, S.A.Fard, C.Huizenga, G.Paliaga, G.Brager, L.Zagreus, Air movement preferences observed in office buildings, Int. J. Biometeorol. 51 (2007) 349–360. https:/doi.org/10.1007/s00484-006-0079-y.
- [15] J.Kim, S.Schiavon, G.Brager, Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control, Build. Environ. 132 (2018) 114–124. https:/doi.org/10.1016/j.buildenv.2018.01.023.
- [16] J.Kim, Y.Zhou, S.Schiavon, P.Raftery, G.Brager, Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning, Build. Environ. 129 (2018) 96–106. https:/doi. org/10.1016/j.buildenv.2017.12.011.
- [17] A. Lipczynska, Impact of combined system of personalized ventilation and chilled ceiling on indoor environment and energy consumption, Ph.D. thesis, Silesian University of Technology, 2015.
- [18] S.Liu, L.Yin, S.Schiavon, W.K.Ho, K.V.Ling, Coordinate control of air movement for optimal thermal comfort, Sci. Technol. Built Environ. 0 (2018) 1–11. https:/ doi.org/10.1080/23744731.2018.1452508.
- [19] S.Liu, L.Y in, W.K.Ho, K.V.Ling, S.Schiavon, A tracking cooling fan using geofence and camera-based indoor localization, Build. Environ. 114 (2017) 36–44. https:/doi.org/10.1016/j.buildenv.2016.11.047.
- [20] A.K.Melikov, Advanced air distribution: improving health and comfort while reducing energy use, Indoor Air. 26 (2016) 112–124. https:/doi.org/10.1111/ ina.12206.
- [21] S.Schiavon, B.Yang, Y.Donner, V.W.-C.Chang, W.W. Nazaroff, Thermal comfort, perceived air quality and cognitive performance when personally controlled air movement is used by tropically acclimatized persons, Indoor Air. 27 (2017) 690–702. https:/doi.org/10.1111/ina.12352.
- [22] ANSI/ASHRAE5 2.2, Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2017.
- [23] EN ISO 7730, Ergonomics of the thermal environment -Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, European Committee for Standardization, Brussels, Belgium, 2005.
- [24] P.Fanger, Thermal comfort. Analysis and applications in environmental engineering, McGraw-Hill, New York, 1970.
- [25] R. de Dear, G.S.Brager, Developing an adaptive model of thermal comfort and preference, in: 1998: pp. 145–167.
- [26] J.F.Nicol, M.A.Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings, Energy Build. 34 (2002) 563–572. https:/doi. org/10.1016/S0378-7788(02)00006-3.
- [27] R.J. de Dear, T.Akimoto, E.A.Arens, G.Brager, C.Candido, K.W.D.Cheong, B. Li, N. Nishihara, S.C. Sekhar, S. Tanabe, J. Toftum, H. Zhang, Y. Zhu, Progress in thermal comfort research over the last twenty years, Indoor Air. 23 (2013) 442–461. https:/doi.org/10.1111/ina.12046.
- [28] J. van Hoof, Forty years of Fanger’s model of thermal comfort: comfort for all?, Indoor Air. 18 (2008) 182–201. https:/doi.org/10.1111/j. 1600-0668.2007.00516.x.
- [29] M.A. Humphreys, J.F. Nicol, The validity of ISO-PMV for predicting comfort votes in every-day thermal environments, Energy Build. 34 (2002) 667–684. https:/doi.org/10.1016/S0378-7788(02)00018-X.
- [30] Z. Wang, R. de Dear, M. Luo, B. Lin, Y. He, A. Ghahramani, Y. Zhu, Individual difference in thermal comfort: A literature review, Build. Environ. 138 (2018) 181–193. https:/doi.org/10.1016/j.buildenv.2018.04.040.
- [31] H. Zhang, C. Huizenga, E. Arens, T. Yu, Considering individual physiological differences in a human thermal model, J. Therm. Biol. 26 (2001) 401–408. https:/doi.org/10.1016/S0306-4565(01)00051-1.
- [32] C.Cândido, R. de Dear, R.Lamberts, L.Bittencourt, Cooling exposure in hot humid climates: are occupants ‘addicted’?, Archit. Sci. Rev. 53 (2010) 59–64. https:/doi.org/10.3763/asre.2009.0100.
- [33] C.Cândido, R. de Dear, M.Ohba, Effects of artificially induced heat acclimatization on subjects’ thermal and air movement preferences, Build. Environ. 49 (2012) 251–258. https:/doi.org/10.1016/j.buildenv.2011.09.032.
- [34] P.Wargocki, D.P.Wyon, Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork, Build. Environ. 112 (2017) 359–366. https:/doi.org/10.1016/j.buildenv.2016.11.020.
- [35] WHO, Obesity, World Health Organ.(2018).http:/www.who.int/topics/obesity/ en/ (accessed April 19, 2018).
- [36] S.Blaza, J.S.Garrow, Thermogenic response to temperature, exercise and food stimuli in lean and obese women, studied by 24 h direct calorimetry, Br. J. Nutr. 49 (1983) 171–180. https:/doi.org/10.1079/BJN19830022.
- [37] M.Chudecka, A.Lubkowska, A.Kempińska-Podhorodecka, Body surface temperature distribution in relation to body composition in obese women, J. Therm. Biol. 43 (2014) 1–6. https:/doi.org/10.1016/j.jtherbio.2014.03.001.
- [38] A.C.C. Salamunes, A.M.W. Stadnik, E.B. Neves, The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography, J. Therm. Biol. 66 (2017) 1–9. https:/doi.org/10.1016/j.jther- bio.2017.03.006.
- [39] T.H. Benzinger, Heat regulation: homeostasis of central temperature in man, Physiol. Rev. 49 (1969) 671–759. https:/doi.org/10.1152/ physrev.1969.49.4.671.
- [40] Y.Yao, Z.Lian, W.Liu, Q.Shen, Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments, Indoor Built Environ. 16 (2007) 505–518. https:/doi. org/10.1177/1420326X07084291.
- [41] O.Bar-Or, H.M.Lundegren, E.R.Buskirk, Heat tolerance of exercising obese and lean women., J. Appl. Physiol. 26 (1969) 403–409. https:/doi.org/10.1152/ jappl.1969.26.4.403.
- [42] Buskirk E.R., Lundegren H., Magnusson L., Heat acclimatization patterns in obese and lean individuals*†, Ann. N. Y. Acad. Sci. 131 (2006) 637–653. https:/ doi.org/10.1111/j.1749-6632.1965.tb34827.x.
- [43] N.K.Chung, C.H.Pin, Obesity and the occurrence of heat disorders, Mil.Med. 161 (1996) 739–742. https:/doi.org/10.1093/milmed/161.12.739.
- [44] L.Landsberg, A teleological view of obesity, diabetes and hypertension, Clin. Exp. Pharmacol. Physiol. 33 (2006) 863–867. https:/doi.org/10.1111/j. 1440-1681.2006.04455.x.
- [45] A.M. Sharma, V.T. Chetty, Obesity, hypertension and insulin resistance, Acta Diabetol. 42 Suppl 1 (2005) S3-8. https:/doi.org/10.1007/s00592-005- 0175-1.
- [46] M.-S.Zhou, A.Wang, H.Yu, Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?, Diabetol. Metab. Syndr. 6 (2014) 12. https:/doi.org/10.1186/1758-5996-6-12.
- [47] L.Landsberg, J.B.Young, W.R.Leonard, R.A.Linsenmeier, F.W.Turek, Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance, Metabolism. 58 (2009) 871–876. https:/doi.org/10.1016/j.metabol.2009.02.017.
- [48] N.Charkoudian, Skin Blood Flow in Adult Human Thermoregulation: How It Works, When It Does Not, and Why, Mayo Clin. Proc. 78 (2003) 603–612. https:/doi.org/10.4065/78.5.603.
- [49] F.W.Bertelsmann, J.J.Heimans, E.J.Weber, E.A.van der Veen, J.A.Schouten, Thermal discrimination thresholds in normal subjects and in patients with diabetic neuropathy., J. Neurol. Neurosurg. Psychiatry. 48 (1985) 686–690. https:/doi.org/10.1136/jnnp.48.7.686.
- [50] R.J.C. Guy, C.A. Clark, P.N. Malcolm, P.J. Watkins, Evaluation of thermal and vibration sensation in diabetic neuropathy, Diabetologia. 28 (1985) 131–137. https:/doi.org/10.1007/BF00273859.
- [51] G.A.Ijff, F.W.Bertelsmann, J.J.P. Nauta, J.J.Heimans, Cold and warm cutaneous sensation in diabetic patients, Diabet. Med. 8 (1991) S71–S73. https:/doi. org/10.1111/j.1464-5491.1991.tb02161.x.
- [52] T.E.Graham, M.Viswanathan, J.P. Van Dijk, A.Bonen, J.C.George, Thermal and metabolic responses to cold by men and by eumenorrheic and amenorrheic women, J. Appl. Physiol. 67 (1989) 282–290. https:/doi.org/10.1152/jap- pl.1989.67.1.282.
- [53] A.Gudmundsson, B.Goodman, S.Lent, S.Barczi, A.Grace, L.Boyle, W.B.Ershler, M. Carnes, Effects of estrogen replacement therapy on the circadian rhythms of serum cortisol and body temperature in postmenopausal women, Exp. Gerontol. 34 (1999) 809–818. https:/doi.org/10.1016/S0531-5565(99)00044-3.
- [54] D.R.Meldrum, I.M.Shamonki, A.M.Frumar, I.V.Tataryn, R.J.Chang, H.L. Judd, Elevations in skin temperature of the finger as an objective index of postmenopausal hot flashes: Standardization of the technique, Am. J. Obstet. Gynecol. 135 (1979) 713–717. https:/doi.org/10.1016/0002-9378(79)90380-6.
- [55] V.Stearns, L.Ullmer, J.F.Lopez, Y.Smith, C.Isaacs, D.F.Hayes, Hot flushes, The Lancet. 360 (2002) 1851–1861. https:/doi.org/10.1016/S0140- 6736(02)11774-0.
- [56] T.Hoyt, S.Schiavon, F.Tartarini, T.Cheung, D.Moon, K.Steinfeld, CBE Thermal Comfort Tool, (2019). http:/comfort.cbe.berkeley.edu/.
- [57] EN ISO 7726, Ergonomics of the thermal environment. Instruments for measuring physical quantities, European Committee for Standardization, 2001.
- [58] M. Daly, Association of ambient indoor temperature with body mass index in England, Obesity. 22 (2014) 626–629. https:/doi.org/10.1002/oby. 20546.
- [59] R.F. Rupp, R. de Dear, E. Ghisi, Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework, Energy Build. 158 (2018) 1475–1486. https:/doi.org/10.1016/j.enbuild. 2017.11.047.
- [60] C.Duarte, P.Raftery, S.Schiavon, Development of whole-building energy models for detailed energy insights of a large office building with Green Certification rating in Singapore, Energy Technol. 5 (2017) 1–11. https:/doi.org/10.1002/ ente.201700564.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08ff1811-bbf1-45f9-a0e0-2e9388055fd4