Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As a non-steroidal anti-inflammatory drug, diclofenac, was commonly used as analgesic, antiarthritic and antirheumatic, and has frequently been detected in municipal wastewater treatment plants (MWTPs) effluents and demonstrated to be potentially environmental risk on human beings. In the present study, N, S co-doped TiO2 nano-crystallites decorated TiO2 nano-tube arrays (N, S-TiO2 NCs/TiO2 NTAs) photoelectrode was used to degrade diclofenac containing wastewater. In addition, the effects of some critical parameters including initial pH, external positive potential, sodium sulfate concentration and initial diclofenac concentration on the photoelectrocatalytic (PEC) degradation of diclofenac containing wastewater and dynamic characteristics were investigated systematically. Results showed that N, S-TiO2 NCs/TiO2 NTAs photoelectrode exhibited high PEC efficiency for the degradation of diclofenac, in which the PEC processes fitted well with the Langmuir–Hinshelwood (L–H) model. Furthermore, external additional anions such as Cl–, ClO– and NO3 – played an important role in inhibiting the degradation of diclofenac. Also, the N, S-TiO2 NCs/TiO2 NTAs photoelectrode possessed good stability for consecutive applications for degradation of diclofenac, which could potentially be utilized in wastewater treatment.
Czasopismo
Rocznik
Tom
Strony
117--130
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
- Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810 008, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road, Changning District, Shanghai 200050, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730 000, P.R. China
autor
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, P.R. China
autor
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810 008, P.R. China.
Bibliografia
- [1] LANDSDORP D., VREE T.B., HANSSEN T.J., GUELEN P.J.M., Pharmacokinetics of rectal diclofenac and its hydroxyl metabolites in man, Int. J. Clin. Pharm., Ther. Toxicol., 1990, 28, 298.
- [2] HIRSCH R., TERNES T., HABERER K., KRATZ K.L., Occurrence of antibiotics in the aquatic environment, Sci. Total Environ., 1999, 225, 109.
- [3] HAAP T.T., KÖHLER R.H.R., Acute effects of diclofenac and DMSO to Daphnia magna. Immobilisation and hsp70-induction, Chemosphere, 2008, 73, 353.
- [4] TAGGGART M.A., CUTHBERT R., DAS D.K., MEHARG A.A., Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines, Environ. Pollut., 2007, 147, 60.
- [5] MEHINTO A.C., HILL E.M., TYLER C.R., Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (oncorhynchus mykiss), Environ. Sci. Tech., 2010, 44, 2176.
- [6] CLEUVERS M., Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid, Ecotox. Environ. Safe., 2004, 59, 309.
- [7] HUBER M.M., CANONICA S., PARK G.Y., GUNTEN U.V., Oxidation of pharmaceuticals during ozonation and advanced oxidation processes, Environ. Sci. Tech., 2003, 37, 1016.
- [8] BERNABEU A., VERCHER R.F., SANTOS-JUANES L., SIMÓN P.J., LARDÍN C., MARTÍNEZ M.A., VICENTE J.A., GONZÁLEZ R., LLOSÁ C., ARGUES A., AMAT A.M., Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents, Catal. Today, 2011, 161, 235.
- [9] LINSEBIGLER A.L., LU G.Q., YATES Y.T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735.
- [10] SHIN K., SEOK S., IM S.H., PARK J.H., CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition. Use in photoelectrochemical cells, Chem. Commun., 2010, 46, 2385.
- [11] CHENG X.W., LIU H.L., YU X.J., CHEN Q.H., LI J.J., WANG P., UMAR A., WANG Q., Preparation of highly ordered TiO2 nanotube array. Photoelectrode for the photoelectrocatalytic degradation of Methyl Blue. Activity and mechanism study, Sci. Adv. Mater., 2013, 5, 1563.
- [12] CHENG X.W., PAN G.P., YU X.J., ZHENG T., UMAR A., WANG Q., Effect of post-annealing treatment on photocatalytic and photoelectrocatalytic performances of TiO2 nano-tube arrays photoelectrode, J. Nanosci. Nanotechn., 2013, 13, 5580.
- [13] CHENG X.W., LIU H.L., CHEN Q.H., LI J.J., WANG P., Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode, Electrochim. Acta, 2013, 108, 203.
- [14] CHENG X.W., LIU H.L., CHEN Q.H., LI J.J., WANG P., Construction of N, S co-doped TiO2 NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced visible light photocatalytic mechanism, Electrochim. Acta, 2013, 103, 134.
- [15] CHENG X.W., LIU H.L., CHEN Q.H., LI J.J., WANG P., Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac, J. Hazard. Mater., 2013, 254, 141.
- [16] CHENG X.W., LIU H.L., CHEN Q.H., LI J.J., WANG P., Preparation of graphene film decorated TiO2 nanotube array photoelectrode and its enhanced visible light photocatalytic mechanism, Carbon, 2014, 66, 450.
- [17] OLIVEIRA H.G., NERY D.C., LONGO C., Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes, Appl. Catal. B-Environ., 2010, 93, 205.
- [18] ZHU K., NEALE N.R., MIEDANER A., FRANK A.J., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotube arrays, Nano Letters, 2007, 7, 69.
- [19] HOFFMAN M.R., MARTIN S.T., CHIO W.Y., BAHNEMANN D.W., Environmental application of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69.
- [20] KORMANN C., BAHNEMANN D.W., HOFFMANN M.R., Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions, Environ. Sci. Tech., 1991, 25, 494.
- [21] ZHANG N., LIU G.G., LIU H.J., WANG Y.L., HE Z.W., WANG G., Diclofenac photodegradation under simulated sunlight. Effect of different forms of nitrogen and kinetics, J. Hazard. Mater., 2013, 2011, 192, 411.
- [22] WU S.J., HAN H.W., TAI Q.D., ZHANG J., XU S., ZHOU C., YANG Y., HU H., CHEN B., SEBO B., ZHAO X.Z., Enhancement in dye-sensitized cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering, Nanotechn., 2008, 19, 215704.
- [23] HU C., YU J.C., HAO Z.P., WONG P.K., Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes, Appl. Catal. B-Environ., 2003, 46, 35.
- [24] CHENG X.W., PAN G.P., YU X.J., Visible light responsive photoassisted electrocatalytic system based on CdS NCs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment, Electrochim. Acta, 2015, 156, 94.
- [25] LIU Y.B., GAN X.J., ZHOU B.X., XIONG B.T., LI J.H., DONG C.P., BAI J., CAI W.M., Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, J. Hazard. Mater., 2013, 171, 678.
- [26] LEE K.Y., KIM J.Y., KIM H., LEE Y.J., TAK Y.S., Effect of electrolyte conductivity on the formation of a nantubular TiO2 photoanode for a dye-sensitized solar cell, J. Korean Phys. Soc., 2009, 54, 1027.
- [27] GAO T., QIAN C.Y., The development of organic pollutants in water in TiO2 photocatalytic oxidation, Industrial Water Treatment, 2000, 20, 10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08fef790-c1c8-46d5-a43c-21c0e7221c42