PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Soil and Surface Water Quality in Makhat’s Watershed (Taza Province, Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acid mine drainage (AMD) threats the soils and water bodies in the territories of the sulfide mining activities all over the world. Bouaazza’s mine (NE Morocco) lead and sulfides exploitation resulted in the surface exposure of large superficies of acid discharges. The results of physicochemical and geochemical analysis indicate an acidic pH (3.0–7.0) of water samples, with concentrations of lead exceeding Moroccan standards (50 μg/L). The pH in soils is considered from slight up to moderate acidic (< 6.5), with low limestone content (< 6% of CaCO3), and high lead and zinc values exceeding international standards (300 mg/kg). These results indicate the high health risk generated by the absence of environmental monitoring of the mining operations which threaten the water quality in the surrounding area.
Twórcy
  • Laboratory of Intelligent System, Georesources and Renewable Energies. University of Sidi Mohammed Ben Abdellah, Morocco
  • Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece
autor
  • Laboratory of Intelligent System, Georesources and Renewable Energies. University of Sidi Mohammed Ben Abdellah, Morocco
  • LOMC UMR 6294 CNRS, University Le Havre Normandie, 76600 Le Havre, France
  • Laboratory of Functional Ecology and Environment Engineering, University of Sidi Mohammed Ben Abdellah, FST Fes, Route d’Imouzzer P.O. Box: 2202, 30 000 Morocco
  • Laboratory of Intelligent System, Georesources and Renewable Energies. University of Sidi Mohammed Ben Abdellah, Morocco
  • Laboratory of Functional Ecology and Environment Engineering, University of Sidi Mohammed Ben Abdellah, FST Fes, Route d’Imouzzer P.O. Box: 2202, 30 000 Morocco
  • Laboratory of Intelligent System, Georesources and Renewable Energies. University of Sidi Mohammed Ben Abdellah, Morocco
Bibliografia
  • 1. Aderinola O.J., Clarke E.O., Olarinmoye O.M., Kusemiju V., Anatekhai, M.A. 2009. Heavy Metals in Surface Water, Sediments, Fish and Perwinklesof Lagos Lagoon, 5(5), 609–617.
  • 2. Akoudad N. 2015. FICHE MARCHÉ Le secteur minier au Maroc. ww. w.ocpgroup.ma (Date of access: March 20, 2022.
  • 3. Amrani M., Taha Y., Haloui Y., Benzaazoua M., Hakkou R. 2020. Sustainable reuse of coal mine waste: Experimental and economic assessments for embankments and pavement layer applications in morocco. Minerals, 10(10), 1–17. https://doi.org/10.3390/min10100851
  • 4. Ben Ali H. 2019. Traitement passif du drainage minier à faible température et forte salinité. Thèse de doctorat, Université de Montréal, 255. https://publications.polymtl.ca/3871/
  • 5. Boularbah A., Schwartz C., Bitton G., Morel J.L. 2006. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63(5), 802–810. https://doi.org/10.1016/j.chemosphere.2005.07.079
  • 6. Briffa J., Sinagra E., Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/J.HELIYON.2020.E04691
  • 7. Coudert L., Benzaazoua M., Jouini M. 2019. Étude sur les résidus de traitement passif du drainage minier acide. https://www.uquebec.ca/reseau/fr/medias/actualites-du-reseau/etude-sur-les-residus-detraitement-passif-du-drainage-minier-acide (Date of access: April 25, 2022).
  • 8. Day J.H., Everett K.R. 1972. Classification of Organic Soils. Arctic and Alpine Research, 4(3), 283. https://doi.org/10.2307/1550232
  • 9. Drapeau C., Argane R., Delolme C., Blanc D., Benzaazoua M., Hakkou R., Baumgartl T., Edraki M., Lassabatere L. 2021. Lead mobilization and speciation in mining waste: Experiments and modeling. Minerals, 11(6). https://doi.org/10.3390/min11060606
  • 10. FAO. 2020. Standard Operating Procedure for soil calcium carbonate equivalent - titrimetric method. https://www.fao.org/publications/card/fr/c/CA8621EN/ (Date of access: April 22, 2022).
  • 11. Gałaś A., Kot-Niewiadomska A., Czerw H., Simić V., Tost M., Wårell L., Gałaś. S. 2021. Impact of Covid-19 on the Mining Sector and Raw Materials Security in Selected European Countries. 10, 39. https://doi.org/10.3390/resources
  • 12. Galea C. 2015. Sample handling and Storage Requirements for Water and Wastewater Samples. Standard Operating Procedure, Mackay Regional Council, Document No: SAS SOP001https://www.mackay.qld.gov.au/__data/assets/pdf_file/0011/192683/SOP_0012_Sampling_And_Storage_V4.1.pdf (Date of access: April 10, 2022).
  • 13. Gandhi S.M., Sarkar B.C. 2016. Chapter 6 – Geochemical Exploration. In S. M. Gandhi & B. C. Sarkar (Eds.), Essentials of Mineral Exploration and Evaluation (pp. 125–158). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-805329-4.00013-2
  • 14. Hakkou R., Benzaazoua M., Bussière, B. 2008. Acid mine drainage at the abandoned kettara mine (Morocco): 2. mine waste geochemical behavior. Mine Water and the Environment, 27(3), 160–170. https://doi.org/10.1007/s10230-008-0035-7
  • 15. Hoepffner C. 1987. Hoepffner, C. 1987. La tectonique hercynienne dans l’Est du Maroc. Thèse ès Sciences, Université de Strasbourg, 280.
  • 16. Hüppi R., Felber R., Neftel A., Six J., Leifeld, J. 2015. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil, 1(2). https://doi.org/10.5194/soil-1-707-2015
  • 17. Iavazzo P., Ducci D., Adamo P. 2012. Impact of Past Mining Activity on the Quality of Water and Soil in the High Impact of Past Mining Activity on the Quality of Water and Soil in the High Moulouya Valley ( Morocco ). May 2014. https://doi.org/10.1007/s11270-011-0883-9
  • 18. Itard Y., Bosc R. 2001. Traitements et préventions des drainages acides provenant des résidus miniers. Revue bibliographie. http://infoterre.brgm.fr/rapports/RP-50829-FR.pdf (Date of access: April 25, 2022).
  • 19. Jabłońska-Czapla M., Nocoń K., Szopa S., Łyko A. 2016. Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environmental Monitoring and Assessment, 188(5). https://doi.org/10.1007/S10661-016-5233-3
  • 20. Kelepertzis E., Galanos E., Mitsis I. 2013. Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (central Greece). Journal of Geochemical Exploration, 125. https://doi.org/10.1016/j.gexplo.2012.11.007
  • 21. Kierczak J., Pietranik A., Pędziwiatr A. 2021. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of The Total Environment, 755, 142620. https://doi.org/10.1016/j.scitotenv.2020.142620
  • 22. Laaraj M., Benaabidate L., Mesnage V. 2020. Assessment of inaouene river pollution for potable water supply, Northern Morocco. Journal of Ecological Engineering, 21(7), 68–80. https://doi.org/10.12911/22998993/125450
  • 23. Lakrim M., El Aroussi O., Mesrar L., Jabrane R. 2011. Etude d’impact des déchets miniers de Ia mine ferrifère de nador sur l’environnement (Nord-Est du Maroc). Revue Notes et Mémoires du Service Géologique, 575, 152-155.
  • 24. Lakrim M., Mesrar L., El Aroussi O., Jabrane R. 2016. Application Géomatique Pour La Cartographie De La Vulnérabilité Environnementale Engendrée Par Les Déchets Miniers De La Mine Ferrifere De Nador (Nord-est du Maroc). European Scientific Journal, ESJ, 12(15), 287. https://doi.org/10.19044/ESJ.2016.V12N15P287
  • 25. Lghoul M., Maqsoud A., Hakkou R., Kchikach A. 2014. Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. Journal of Geochemical Exploration, 144(PC), 456–467. https://doi.org/10.1016/j.gexplo.2013.12.003
  • 26. Liu L. 2018. Application of a Hydrodynamic and Water Quality Model for Inland Surface Water Systems. Applications in Water Systems Management and Modeling. https://doi.org/10.5772/INTECHOPEN.74914
  • 27. Luo X., Wu C., Lin Y., Li W., Deng M., Tan J., Xue S. 2023. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. Journal of Environmental Sciences, 125, 662–677. https://doi.org/10.1016/J.JES.2022.01.029
  • 28. Mancini L., Sala S. 2018. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resources Policy, 57, 98–111. https://doi.org/https://doi.org/10.1016/j.resourpol.2018.02.002
  • 29. Mesrar L. 2013. Caractérisation géotechnique minéralogique technologique des marnes miocènes du couloir sud riffan (Taza-Fès): Etude et valorisation. Sciences and Techniques Ph.D. Dissertation, Sidi Mohamed Ben Abdellah University, Morocco, 189.
  • 30. Group Oxford Business. 2016. Mining sector in Morocco diversifies away from phosphates. https://oxfordbusinessgroup.com/overview/new-tricks-having-traditionally-relied-phosphates-industry-miningsector-diversifying (Date of access: March 25, 2022).
  • 31. Moyo A., Filho J.R.D.A., Harrison S.T.L., Broadhurst J.L. 2019. Implications of Sulfur Speciation on the Assessment of Acid Rock Drainage Generating Potential: A Study of South African Coal Processing Wastes. Minerals, 9(12), 776. https://doi.org/10.3390/MIN9120776
  • 32. Naoura J. 2012. Caractérisation hydrologique et qualitative des eaux de surface du bassin versant du haut inaouene. Sidi Mohamed Ben Abdellah University.
  • 33. Nfissi S., Alikouss S., Zerhouni Y., Hakkou R., Benzaazoua M., Bouzahzah, H. 2017. Control of acid mine drainage from an abandoned mine in Morocco by using cement kiln dust and fly ash as amendments. Journal of Materials and Environmental Sciences, 8(12), 4457–4466.
  • 34. Nganje T.N., Hursthouse A.S., Edet A. et al. 2017. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria. Appl Water Sci 7, 961–985. https://doi.org/10.1007/s13201-015-0308-9
  • 35. Norme NF ISO 11465. 1994.
  • 36. Norme NF ISO 14235. 1998.
  • 37. Norme NF ISO X31-103. 1988.
  • 38. Norme NF X31-147. 1996.
  • 39. Oshunsanya S.O. 2018. Introductory Chapter: Relevance of Soil pH to Agriculture. Soil PH for Nutrient Availability and Crop Performance. https://doi.org/10.5772/INTECHOPEN.82551
  • 40. Patel A.H. 2015. Electrical Conductivity as Soil Quality Indicator of Different Agricultural Sites of Kheda District in Gujarat. International Journal of Innovative Research in Science, Engineering and Technology (An ISO, 4(8), 7305–7310. https://doi.org/10.15680/IJIRSET.2015.0408111
  • 41. Pelletier-Allard R. 2014. Caractérisation et neutralisation du drainage minier acide par une dolomie à haute pureté. Master in environment, Univ. Shrbrouke, Canada, 84p.
  • 42. pH of Water - Environmental Measurement Systems. https://www.fondriest.com/environmentalmeasurements/parameters/water-quality/ph/ (Date of access: April 16, 2022).
  • 43. Press A. 2019. How mining sites are tainting drinking water sources in the US West. https://nypost.com/2019/02/20/how-mining-sites-are-taintingdrinking-water-sources-in-the-us-west/ (Date of access: March 20, 2022).
  • 44. Rajeswari A., Jackcina Stobel Christy E., Gopi S., Jayaraj K., Pius A. 2020. Characterization studies of polymer-based composites related to functionalized filler-matrix interface. In K.L. Goh, A.M.K., R.T. De Silva, & S.B.T.-I. in P. and F.R.C. Thomas (Eds.), Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing, 219–250. https://doi.org/https://doi.org/10.1016/B978-0-08-102665-6.00009-1
  • 45. Rezaie B., Anderson A. 2020. Sustainable resolutions for environmental threat of the acid mine drainage. Science of The Total Environment, 717, 137211. https://doi.org/10.1016/j.scitotenv.2020.137211
  • 46. Rivera M.J., Luís A.T., Grande J.A., Sarmiento A.M., Dávila J.M., Fortes J.C., Córdoba F., Diaz-Curiel J., Santisteban M. 2019. Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain). International Journal of Environmental Research and Public Health, 16(22), 4516. https://doi.org/10.3390/IJERPH16224516
  • 47. Saleh A., Dawood Y. H., Gad A. 2022. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land, 11(3), 319. https://doi.org/10.3390/land11030319
  • 48. Saleh H.E.-D.M. 2018. Heavy Metals. https://doi.org/10.5772/INTECHOPEN.71185
  • 49. Schumacher B.A., States U., Protection E. 1990. Comparison of Soil Sample Homogenization Techniques. September https://www.researchgate.net/publication/248696175_Comparison_of_Soil_Sample_
  • 50. Shirokova Y., Forkutsa I., Sharafutdinova N. 2000. Use of Electrical Conductivity Instead of Soluble Salts for Soil Salinity Monitoring in Central Asia. Irrigation and Drainage Systems, 14, 199–205. https://doi.org/10.1023/A:1026560204665
  • 51. Shoukat A., Muhammad Shoukat Hussain, A.S. 2020. Effects of Temperature on Total dissolved Solid in water. Conference: Water Quality Study. At: Mehran University Sindh. Projects: Water treatment and recycling. Water treatment and recycling.Homogenization_Techniques (Date of access: April 25, 2022).
  • 52. Sensorex. 2019. Why Electrical Conductivity of Water is Important for Industrial Applications - Sensorex. https://sensorex.com/2019/10/08/electricalconductivity-water-important-industrial-applications/ (Date of access: April 18, 2022).
  • 53. Skousen J., Zipper C.E., Rose A., Ziemkiewicz P.F., Nairn R., Mcdonald L.M., Kleinmann R.L. 2017. Review of Passive Systems for Acid Mine Drainage Treatment. 36(1), 133–153. https://doi.org/10.1007/s10230-016-0417-1
  • 54. SSSA. 2022. Soil Moisture | Earth Science Week. https://www.earthsciweek.org/classroom-activities/soil-moisture (Date of access: Mai 05, 2022).
  • 55. Tun M.K.M. 2005. II Sampling. Fabrication and Characterization of Co-Sputtered CoxAlyOz Granular Thin Films and Devices, 23–39. https://www.env.go.jp/en/chemi/pops/Appendix/04-GuideLine/04Chapter2.pdf (Date of access: April 17, 2022).
  • 56. Wang Z., Xu Y., Zhang Z., Zhang Y. 2021. Review: Acid mine drainage (AMD) in abandoned coal mines of Shanxi, China. Water (Switzerland), 13(1). https://doi.org/10.3390/W13010008
  • 57. Zhang J., Li M., Taheri A., Zhang W., Wu Z., Song, W. 2019. Properties and Application of Backfill Materials in Coal Mines in China. Minerals, 9(1), 53. https://doi.org/10.3390/MIN9010053
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08fe15f9-dd7f-4998-8f93-a1388a72af0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.