Zmiany dynamicznych modułów sprężystości pokładu węgla przed frontem ściany

Changes of the dynamic elastic modules of the coal seam ahead the longwall face

Dr Łukasz Wojtecki*)

Mgr Grażyna Dzik**)

Dr inż. Adam Mirek**)

Treść: Na podstawie modułów sprężystości można określić skłonność pokładu do tappań (Goszcz i Dworak 1982, Dubiński i Konopko 2000). Moduły sprężystości można wyznaczyć in situ badaniami sejsmicznymi np. metodą profilowania. W wydrazzonej w pokładzie 510 pochylni zostały przeprowadzone cykliczne badania sejsmiczne metodą profilowania podczas zbliżania się do niej frontu ściany zawałowej w tym samym pokładzie. Badania umożliwiły określenie zmian modułów sprężystości pokładu węgla. Podczas zbliżania się frontu ściany pokład zachowywał się w coraz większym stopniu sprężyście, co oznaczało wzrost jego skłonności do tapań. Odległość, przy której wartości modułów sprężystości pokładu węgla uległy znaczącej zmianie została jednoznacznie określona. W oparciu m.in. o przeprowadzone badania podjęto adekwatne środki profilaktyczne. Uzyskane wyniki mogą okazać się użyteczne przy projektowaniu stref szczególnego zagrożenia tapaniami w podobnych warunkach geologiczno-górniczych.
Abstract: The predisposition of the coal seam to burst can be estimated with the use of elastic modules (Goszcz i Dworak 1982, Dubiński i Konopko 2000). It is possible to determine the elastic modules in situ with the use of seismic investigations, for example with the seismic profiling method. Cyclic seismic profilings have been performed in the inclined drift, drilled in the coal seam no. 510, during the approach of face of longwall with caving in the same coal seam. The investigations made it possible to determine the changes of the coal seam elastic modules. While the longwall was approaching, the coal seam showed increasingly elastic properties which signalized an increase of its tendency to burst. The distance when the values of the coal seam elastic modules changed significantly was clearly distinguished. On the basis of the performed investigations adequate preventive measures were applied. These results should be useful in designing zones of the enhanced rockburst hazard in similar geological and mining conditions.

Stowa kluczowe:

moduty sprężystości, profilowanie sejsmiczne, ciśnienie eksploatacyjne

Key words:

elastic modules, seismic profiling, exploitation pressure

1. Wprowadzenie

Występowanie tapań jest jednym z zagrożeń naturalnych w podziemnych zakładach górniczych wydobywających węgiel kamienny. Istotne znaczenie w występowaniu tąpań posiadają właściwości pokładu, w którym prowadzone sa roboty górnicze. Właściwości sprężyste pokładu świadczą o zagrożeniu tąpaniami [6].

Rozkład naprężeń istniejacych w górotworze oraz jego właściwości fizykomechaniczne mają swoje odzwierciedlenie

[^0]w wartości prędkości fal sejsmicznych [3, 4]. Szczególnie zagrożone są wyrobiska chodnikowe, do których zbliża się na niewielką odległość front ściany w tym samym pokładzie. Monitoring zmian właściwości sprężystych pokładu węgla w sąsiedztwie takiego wyrobiska umożliwia wyprzedzajace podjęcie adekwatnych działań w celu ograniczenia zagrożenia tapaniami.

Prędkości fal sejsmicznych w ociosach wyrobisk chodnikowych można wyznaczyć w oparciu o metodę profilowania sejsmicznego. W artykule przedstawiono wyniki cyklicznych profilowań sejsmicznych wykonanych w pochylni w pokładzie 510 w miarę zbliżania się do niej frontu ściany zawałowej w tym samym pokładzie, przy wykorzystaniu specjali-
stycznej przenośnej aparatury iskrobezpiecznej PASAT-M. W procesie interpretacji dla każdego kolejnego profilowania sejsmicznego wyznaczono prędkości podłużnej i poprzecznej fali sejsmicznej, na podstawie których określono z kolei wartości dynamicznych modułów sprężystości. Zaobserwowano zmianę tych parametrów w miarę malejącej odległości po-chylnia-front ściany zawałowej. Podczas drążenia objętej badaniami pochylni, nie obserwowano jakichkolwiek oznak występowania wzrostu naprężeń w pokładzie oraz zagrożenia tapaniami. Analogiczna sytuacja w rejonie pochylni miała miejsce podczas biegu ściany zawałowej w znacznej odległości od pochylni. Zmian gabarytów obudowy pochylni nie obserwowano. Na końcowym wybiegu w sasiedztwie pochylni zaobserwowano wyraźną zmianę modułów sprężystości pokładu 510, a w części pochylni również zmniejszenie jej gabarytów. Oddziaływanie ciśnienia eksploatacyjnego związanego z frontem ściany [11, 7, 1] wpłynęło na zmianę właściwości ośrodka, który zachowywał się w coraz większym stopniu sprężyście. Ze wzrostem sprężystości przyociosowej części pokładu wiązała się większa możliwość wystapienia tappnięcia, co z kolei wymusiło podjęcie adekwatnych środków profilaktycznych.

2. Warunki górniczo-geologiczne w rejonie badań

Badania sejsmiczne metodą profilowania, na podstawie których określono wartości dynamicznych parametrów sprężystości pokładu zostały wykonane w pochylni wydrazzonej w warstwie górnej pokładu 510. Do pochylni tej systematycznie zbliżał się front ściany w pokładzie 510, a jej zakończenie zaprojektowano w odległości średnio około 30 m od objętej badaniami pochylni.

W rejonie wspomnianych wyrobisk pokład 510 zalega na głębokości $840-910 \mathrm{~m}$, a jego miąższość zawiera się w przedziale $5,3-8,1 \mathrm{~m}$. W spagu pokładu 510 występuje łupek ilasty, łupek piaszczysty oraz piaskowiec drobnoziarnisty. W stropie pokładu 510 występują: łupek piaszczysty, piaskowiec drobnoziarnisty, łupek piaszczysty oraz łupek ilasty o sumarycznej miąższości nieprzekraczającej 13 m , powyżej których zalega pokład 507. W odległości od około 70 m nad pokładem 510 występuja grube warstwy piaskowca o dużej
wytrzymałości (dochodzacej do 80 MPa), które łącznie z występującymi między nimi warstwami łupków piaszczystych i ilastych posiadają miąższość dochodzącą do 60 m .

Ściana zawałowa, której front zbliżał się do objętej badaniami pochylni została zaprojektowana w górnej warstwie pokładu 510. Eksploatacja ścianowa została rozpoczęta w rejonie filara dla przekopów skrzydłowych, w sąsiedztwie uskoku o zrzucie 25 m i przebiegu NW-SE, a następnie była kontynuowana wzdłuż zrobów wytworzonych w górnym piętrze ścianowym w kierunku z zachodu na wschód (rys. 1).

Przedmiotowe wyrobiska znajdowały się pod wybranym wcześniej pokładem 507 (rys. 1). Wcześniej dokonano tutaj również eksploatacji pokładu 502, zalegającego w odległości około 126 m nad pokładem 510. Nad polem ściany występowały resztka oraz krawędź eksploatacyjna wytworzone w pokładzie 501, zalegającym w odległości około 140 m nad pokładem 510 (rys. 1).

3. Metodyka wykonywanych profilowań sejsmicznych

Metoda profilowania sejsmicznego jest jedna z metod geofizycznych stosowanych w podziemnych zakładach górniczych wydobywajacych węgiel kamienny od wielu lat [3, 4, 12, 13].

W trakcie drażenia wyrobiska chodnikowego powstaje wokół niego strefa spękana. Strefa spękana cechuje się osłabioną strukturą i obniżonymi naprężeniami (Dubiński 1989). Strefa ta charakteryzuje się zmiana gradientu prędkości rozchodzenia się fal sejsmicznych. Najmniejsza wartość prędkości fali występuje przy ociosie chodnika i rośnie w miarę oddalania się od niego. Rozchodzące się w strefie spękanej fale są falami refragowanymi. Poza strefą spękaną występuje strefa sprężysta, tj. nienaruszona wykonaniem wyrobiska chodnikowego. Na granicy między strefą spękaną i sprężystą występuje maksimum naprężeń obwodowych i najkorzystniejsze warunki propagacji fali refrakcyjnej [12]. W przypadku braku wyraźnej granicy refrakcyjnej wyznaczenie prędkości fali refrakcyjnej nie jest możliwe.

Profilowanie sejsmiczne w wyrobiskach chodnikowych wykonywane jest wzdłuż linii profilowej, na której instalowane sa punkty wzbudzania i odbioru. Wzbudzanie fal

Rys. 1. Mapa pokładu 510, rejon badań
Fig. 1. Map of coal seam no. 510, area of investigations
sejsmicznych odbywa się zazwyczaj poprzez udar młotem bezpośrednio w ocios wyrobiska lub poprzez metalowy pręt. Profil sejsmiczny podzielony jest na mniejsze odcinki zwane rozstawami sejsmicznymi, w których wykonywane sa podstawowe czynności pomiarowe, tj. wzbudzanie, odbiór i rejestracja fal sejsmicznych. Profilowania sejsmiczne można wykonywać w wersji z wieloma punktami wzbudzenia lub z wieloma punktami odbioru.

W objętej badaniami pochylni profilowania sejsmiczne były wykonywane w wersji z wieloma punktami wzbudzania przy wykorzystaniu aparatury sejsmicznej PASAT-M. Odbiornik, tj. sonda geofonowa SG3 rejestrująca w pasmie częstotliwości $4,5-10000 \mathrm{~Hz}$, była instalowana na metalowej kotwie zamocowanej w pokładzie węgla, w ociosie pochylni. Sonda geofonowa SG3 jest sondą dwuosiowa, umożliwiająca rejestrację drgań w płaszczyźnie poziomej równolegle i prostopadle do ociosu wyrobiska pomiarowego. Stosowanie takiej sondy podczas profilowania sejsmicznego umożliwia kierunkową preferencję fali sejsmicznej podłużnej oraz poprzecznej spolaryzowanej poziomo propagujących w pokładzie węgla. W celu preferencji określonych grup falowych stosowany był również odpowiedni kierunek udaru, tj. dla fali sejsmicznej podłużnej poprzez pręt odchylony od kierunku prostopadłego do ociosu w kierunku sondy geofonowej, a dla fali poprzecznej poprzez pręt skierowany prostopadle do ociosu wyrobiska pomiarowego. Sonda geofonowa systemu PASAT-M zaopatrzona jest we własny moduł pomiarowo-transmisyjny MPT. Inicjowanie pomiaru, jak i transmisja przetworzonych sygnałów sejsmicznych pochodzacych z modułu MPT odbywa się przez moduł wyzwalania pomiarów MWP [9]. Przetworzone dane na postać cyfrową są zapamiętywane w pamięci modułu PDA. Transmisja danych odbywa się droga radiową (Bluetooth). Poprzez moduł PDA istnieje możliwość obserwacji zapisów sejsmicznych w czasie rzeczywistym i jednoczesne zapisanie danych z sesji pomiarowej w pamięci urządzenia. Schemat profilowania sejsmicznego wraz z modelem propagacji fal sejsmicznych wzdłuż ociosu pochylni został przedstawiony na rysunku 2.

W objętej badaniami pochylni profil pomiarowy posiadał stałą lokalizację. Odległość między poszczególnymi kanała-

Rys. 2. Schemat profilowania sejsmicznego i modelu propagacji fal sejsmicznych wzdłuż ociosu objętej badaniami pochylni (widok z góry)
Fig. 2. Diagram of seismic profiling and the model of seismic waves propagation along the sidewall of the investigated inclined drift (top view)
mi za każdym razem była taka sama. Wzmocnienie kanałów pomiarowych wynosiło 0 dB , a częstotliwość próbkowania 5 kHz . W celu wyeliminowania ewentualnych przypadkowych szumów stosowano w każdym kanale pomiarowym wielokrotne sumowanie sygnału. Po wykonaniu badań dane pomiarowe transmitowane są poprzez moduł PDA, a następnie analizowane w specjalistycznym oprogramowaniu PASAT Seismic Signals Analysis, w którym możliwa jest analiza przebiegu fal sejsmicznych, korelacja fazowa, określenie pierwszych wstapień fal sejsmicznych. Obraz falowy uzyskany podczas jednego z profilowań sejsmicznych w objętej badaniami pochylni przedstawiono na rysunku 3.

Rys. 3. Obraz falowy uzyskany podczas jednego z profilowań sejsmicznych w objętej badaniami pochylni
Fig. 3. The wave pattern obtained during one of the seismic profiling operations in the investigated inclined drift

Na podstawie odczytanych czasów pierwszych wstąpień fal sejsmicznych i przy uwzględnieniu geometrii rozstawu sejsmicznego skonstruowano hodografy, na podstawie których wyznaczono wartości prędkości rozchodzenia się fal sejsmicznych w badanym ośrodku. Dane, które dotyczyły fali refragowanej, związanej ze strefą spękaną wokół pochylni, wyraźnie odbiegały od głównej gałęzi hodografu związanej z falą refrakcyjna. Zasady interpretacji wyników profilowania sejsmicznego w wyrobiskach korytarzowych zostały przedstawione w literaturze m. [2, 3, 4].

W ramach każdego z profilowań wyznaczono prędkość podłużnej i poprzecznej fali refrakcyjnej oraz średnia prędkość podłużnej i poprzecznej fali refragowanej. Wyznaczone prędkości fali podłużnej i poprzecznej w strefie sprężystej posłużyły do obliczenia wartości modułów sprężystości.

Profilowania sejsmiczne w pochylni rozpoczęto gdy jej odległość od frontu ściany wynosiła około 195 m . Badania te miały na celu ustalenie warunków początkowych, przy nieulegajacym wątpliwości braku wpływu ciśnienia eksploatacyjnego. Kolejne badania wykonywano przy wzajemnej odległości poziomej wynoszącej: $165 \mathrm{~m}, 145 \mathrm{~m}, 120 \mathrm{~m}, 90 \mathrm{~m}$, $50 \mathrm{~m}, 33 \mathrm{~m}$ oraz po wykonaniu chodnika likwidacyjnego

Rys. 4. Lokalizacja profilu sejsmicznego w pochylni względem zbliżającego się frontu ściany
Fig. 4. Location of the seismic profile in the inclined drift opposite to the approaching longwall face
ściany, tj. przy odległości około 30 m . Sytuacja ta została przedstawiona na rysunku 4.

Na podstawie wyznaczonych profilowaniami sejsmicznymi prędkości fal podłużnej i poprzecznej obliczono dynamiczne moduły sprężystości, cechujące właściwości sprężyste pokładu 510 w sasiedztwie przedmiotowej pochylni, w strefie nienaruszonej jej wykonaniem. Wyniki te porównano z obserwowanym wzrostem zagrożenia tapaniami w rejonie pochylni w miarę zbliżania się do niej frontu ściany (objawiającym się przede wszystkim zmniejszeniem gabarytów pochylni).

4. Dynamiczne moduły sprężystości

Sprężystość pokładu węgla jest opisana poprzez moduły sprężystości. Moduły te mogą zostać wyznaczone in situ badaniami sejsmicznymi, np. metoda profilowania oraz laboratoryjnie, na podstawie charakterystyk naprężenie-odkształcenie wyznaczonych podczas obciążania próbek skalnych. Moduły sprężystości wyznaczone laboratoryjnie określa się jako statyczne. Moduły sprężystości wyznaczone w oparciu o prędkości propagacji fal sprężystych określa się mianem dynamicznych. Zalicza się do nich: dynamiczny moduł sprężystości E_{d}, dynamiczny moduł sprężystości objętościowej K_{d}, dynamiczny moduł sprężystości postaci μ_{d}, dynamiczną stała Lamego λ_{d}, a także dynamiczną stałą Poissona v_{d}, na których obliczenie pozwalają następujące wzory

$$
\begin{equation*}
E_{d}=\frac{\rho v_{s}^{2}\left(3 v_{p}^{2}-4 v_{s}^{2}\right)}{2\left(v_{p}^{2}-v_{s}^{2}\right)} \quad[\mathrm{Pa}] \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
K_{d}=\rho\left(v_{p}^{2}-\frac{4}{3} v_{s}^{2}\right) \tag{2}\\
\mu_{d}=\rho v_{s}^{2} \tag{3}\\
\lambda_{d}=\rho\left(v_{p}^{2}-2 v_{s}^{2}\right) \tag{4}\\
v_{d}=\frac{v_{p}^{2}-2 v_{s}^{2}}{2\left(v_{p}^{2}-v_{s}^{2}\right)} \tag{5}
\end{gather*}
$$

gdzie:
v_{p} - prędkość podłużnej fali sejsmicznej w ośrodku skalnym, m / s,
v_{s} - prędkość poprzecznej fali sejsmicznej w ośrodku skalnym, m / s,
ρ - gęstość ośrodka skalnego, $\mathrm{kg} / \mathrm{m}^{3}$ (autorzy dla pokładu węgla przyjęli $\rho=1300 \mathrm{~kg} / \mathrm{m}^{3}$).
Pomiędzy modułami sprężystości występuja zależności, umożliwiające przy znajomości dwóch z nich obliczenie pozostałych. Zależności te były szeroko opisywane w literaturze m.in. [10, 8, 7].

Porównanie modułów wyznaczonych na drodze pomiarów statycznych (laboratoryjnych) i dynamicznych w warunkach ciśnienia atmosferycznego daje rozbieżne wyniki. Rozbieżności te znikają w warunkach wzrastającego ciśnienia, a więc w warunkach zbliżonych do rzeczywistych, które panują na większych głębokościach [4].

W wyniku badań sejsmicznych wykonywanych w kopalniach węgla ustalono relację między modułami sprężystości pokładu węgla a jego skłonnością do tąpań [5,6]. W oparciu
o dynamiczne moduły sprężystości (dynamiczny moduł sprężystości postaci μ_{d} oraz dynamiczną stałą Poissona v_{d}) można wyznaczyć skłonność pokładu węgla do tapań. Metoda bazujaca na tej relacji, nazwana geofizyczną oceną skłonności pokładu węgla do tąpań na podstawie geofizycznego wskaźnika tapliwości $G_{W T}$ Im większa skłonność do tapań, tym większy dynamiczny moduł sprężystości postaciowej i mniejszy współczynnik Poissona (Goszcz 1982). W metodzie wyróżnia się trzy klasy skłonności pokładu do tapań, tzn. I - pokład nieskłonny do tapań, II - pokład słabo skłonny do tapań, III - pokład silnie skłonny do tạpań [4]. Właściwości fizykomechaniczne pokładu świadczą o stopniu jego skłonności do tąpań [2, 4].

5. Wyniki badań

W wyniku cyklicznych badań sejsmicznych metoda profilowania wyznaczono moduły sprężystości pokładu 510 w sąsiedztwie pochylni, do której zbliżał się front ściany zawałowej. Zaobserwowano zmianę wartości sprężystości pokładu 510 w części nienaruszonej wykonaniem pochylni (w strefie sprężystej) związany z oddziaływaniem ciśnienia eksploatacyjnego (tabela 1).

Pokład 510 w sasiedztwie pochylni wykazywał na podstawie czterech pierwszych profilowań sejsmicznych zdecydowanie niższą sprężystość, a objawów wzrostu zagrożenia tapaniami w rejonie pochylni nie stwierdzono.

Pomiar nr 5, wykonany przy odległości wzajemnej frontu ściany od pochylni wynoszacej 90 m , wykazał wyraźna zmianę parametrów sprężystości. W stosunku do wartości poczatkowych zaobserwowano tutaj wzrost dynamicznego modułu sprężystości E_{d} o $16,2 \%$, dynamicznego modułu sprężystości objętościowej K_{d} o 14\%, dynamicznego modułu sprężystości postaci μ_{d} o $16,6 \%$, a dynamicznej stałej Lamego λ_{d} o $12,4 \%$. Jednocześnie zaobserwowano tutaj spadek wartości dynamicznej stałej Poissona v_{d} o $-1,8 \%$ w stosunku do wartości zmierzonej przy całkowitym braku oddziaływania ciśnienia eksploatacyjnego (pomiar nr 1 i 2).

Tabela 1. Moduły sprężystości pokładu 510 w sąsiedztwie pochylni podczas zbliżania się frontu ściany w tym samym pokładzie
Table 1. Elastic modules of coal seam no. $\mathbf{5 1 0}$ in the surroundings of the inclined drift during the approach of the longwall face in the same coal seam

Lp.	Odległość m	$\mathrm{Ed}, \mathrm{GPa}$	$\mathrm{Kd}, \mathrm{GPa}$	$\mu \mathrm{d}, \mathrm{GPa}$	$\lambda \mathrm{d}, \mathrm{GPa}$	$\nu \mathrm{dd}[-]$
1.	195	5,11	3,53	2,03	2,17	0,26
2.	165	5,11	3,53	2,03	2,17	0,26
3.	145	5,21	3,66	2,06	2,28	0,26
4.	120	5,41	3,92	2,13	2,50	0,27
5.	90	5,94	4,02	2,37	2,44	0,25
6.	50	6,43	4,17	2,58	2,44	0,24
7.	33	6,60	4,26	2,66	2,49	0,24
8.	30	6,62	4,32	2,66	2,55	0,24

Ostatnie trzy profilowania sejsmiczne, tj. nr 6, 7, 8, przy odległościach front ściany-pochylnia wynoszących odpowiednio $50 \mathrm{~m}, 33 \mathrm{~m} \mathrm{i} 30 \mathrm{~m}$ wykazały wyraźnie dalszą zmianę parametrów sprężystości pokładu. Porównując ostatni z wymienionych pomiarów z wartościami początkowymi modułów stwierdzono wzrost dynamicznego modułu sprężystości E_{d} o $29,5 \%$, dynamicznego modułu sprężystości objętościowej $K_{d} \mathrm{o} 22,6 \%$, dynamicznego modułu sprężystości postaci $\mu_{d} \mathrm{o}$ 30,9\%, a dynamicznej stałej Lamego λ_{d} o $17,4 \%$. W każdym z trzech ostatnich pomiarów dynamiczna stała Poissona v_{d} była mniejsza od 0,25 . W stosunku do wartości dynamicznej stałej Poissona v_{d} z pomiarów nr 1 czy 2 spadek tego modułu dla trzech ostatnich pomiarów wyniósł średnio -5,9\%. Zmiany właściwości fizykomechanicznych znalazły swoje odzwierciedlenie w wartościach modułów sprężystości. Zmiany modułów sprężystości E_{d}, K_{d}, μ_{d} i λ_{d} pokładu 510 w bezpośrednim sąsiedztwie pochylni, do której zblizał się front ściany zawałowej w tym samym pokładzie węgla przedstawiono na zbiorczym wykresie (rys. 5).

Rys. 5. Zmiany modułów sprężystości $E_{d}, K_{d}, \mu_{d} \mathrm{i} \lambda_{d}$ pokładu 510 w bezpośrednim sąsiedztwie pochylni, przy malejącej odległości od frontu ściany
Fig. 5. Changes of the elastic modules Ed, Kd, $\mu \mathrm{d}$ and $\lambda \mathrm{d}$ of coal seam no. 510 in the direct surroundings of the inclined drift, with the decreasing distance from the longwall face

Na podstawie wyznaczonych wartości modułów sprężystości (dynamicznego modułu sprężystości postaci μ_{d} oraz dynamicznej stałej Poissona v_{d}) określono skłonność pokładu 510 do tąpań w sąsiedztwie pochylni podczas zbliżania się do niej frontu ściany zawałowej. W tym celu wykorzystano nomogram przedstawiony przez Dubińskiego i Konopko (2000). Wyniki zaprezentowano na rysunku 6.

Rys. 6. Zmiana skłonności pokładu 510 do tąpań w sąsiedztwie pochylni spowodowana zbliżaniem się frontu ściany (nomogram wg Dubińskiego i Konopko (2000), zmienione przez autorów)
Fig. 6. Change of coal seam no. 510, tendency to burst in the surroundings of the inclined drift due to the approach of the longwall face (nomogram by Dubinski and Konopko (2000), modified by authors)

Na podstawie modułów sprężystości pokładu 510 wyznaczonych w sąsiedztwie pochylni pierwszymi czterema pomiarami (przy odległości front ściany-pochylnia w zakresie 195-120 m), pokład ten plasował się w bezpośrednim sąsiedztwie granicy klas II i III skłonności do tapań. Korelowało się to z obserwowanym brakiem wzrostu zagrożenia tąpaniami.

Wyniki pomiaru nr 5 (odległość front ściany-pochylnia wynosiła 90 m) wyraźnie zaklasyfikowały pokład 510 już do klasy III, czyli do silnie skłonnego do tapań. W przypadku pomiarów 6-8 (odległość front ściany-pochylnia w zakresie $50-30 \mathrm{~m}$) pokład 510 w jeszcze większym stopniu wykazywał silną skłonność do tapań. Zagrożenie tappaniami w objętej badaniami pochylni w tym okresie wzrosło. Oprócz większej liczby wstrząsów w rejonie pochylni, w północnym jej odcinku (powyżej wyznaczonego profilu sejsmicznego) gabaryty wyrobiska uległy zmniejszeniu, głównie w wyniku lokalnych wypiętrzeń spodku węglowego. Przekroczenie wytrzymałości pokładu 510 na tym odcinku spowodowane było wspólnym oddziaływaniem ciśnienia eksploatacyjnego, zrobów wytworzonych w górnym piętrze ścianowym oraz krawędzi pokładu 501 (rys. 4). Poziom naprężeń w tym rejonie był najprawdopodobniej wyższy niż w sasiedztwie wyznaczonego profilu sejsmicznego. Określenie zmian modułów sprężystości wynikających jednoznacznie z oddziaływania ciśnienia eksploatacyjnego wymagało wyznaczenia profilu poza źródłami ewentualnych dodatkowych naprężeń.

6. Podsumowanie

Przeprowadzone badania w pochylni podczas zbliżania się do niej frontu ściany zawałowej w tym samym pokładzie węgla, umożliwiły określenie, w jaki sposób zmieniają się parametry sprężystości pokładu. Zaobserwowano, że w miarę
zbliżania się frontu ściany pokład węgla wykazywał rosnącą skłonność do tapań. Wyniki przeprowadzonych badań, wspólnie z obserwacjami sejsmologicznymi oraz stwierdzonymi deformacjami wyrobiska w jego północnej części zdeterminowały wprowadzenie dodatkowych działań profilaktycznych, w celu ochrony objętej badaniami pochylni. Na całej długości obudowa pochylni została wzmocniona poprzez dodatkowa zabudowę obudowy poligonowej, a także poprzez zabudowę stojaków stalowych pod odrzwia obudowy zasadniczej. Wykonano również kotwienie stropu przy wykorzystaniu kotew strunowych. Ponadto wprowadzono ograniczenia ruchu załogi przez objętą badaniami pochylnię.

Konfiguracja wyrobisk (równoległość pochylni i frontu ściany) oraz zaprojektowane zakończenie biegu ściany w bliskiej odległości od pochylni (około 30 m) umożliwiły, w oparciu o cykliczne badania sejsmiczne metoda profilowania, określenie zmian modułów sprężystości pokładu węgla w funkcji odległości front ściany-pochylnia. W wyniku przeprowadzonych badań stwierdzono, że parametry te uległy wyraźnej zmianie już przy wzajemnej odległości tych wyrobisk wynoszącej 90 m . Wyniki te są szczególnie istotne z uwagi na wyznaczanie długości ruchomych stref szczególnego zagrożenia tapaniami w chodnikach przyścianowych przed frontem ścian projektowanych w podobnych warunkach. Wyniki przeprowadzonych badań potwierdzają słuszność dotychczasowych działań w zakresie wyznaczania ruchomych stref szczególnego zagrożenia tạpaniami w objętej badaniami kopalni. Chodniki przyścianowe ścian w analogicznych warunkach geologiczno-górniczych obejmowane są 100-metrowymi ruchomymi strefami szczególnego zagrożenia tapaniami, w których obudowa jest wzmacniana oraz ma miejsce ograniczenie liczby zatrudnionych pracowników.

Literatura

1. Chudek M: Mechanika górotworu z podstawami zarządzania ochroną środowiska w obszarach górniczych, Wydawnictwo Politechniki Śaskiej, Gliwice 2010
2. DubińskiJ.: Metody sejsmiki górniczej, w: Poradnik Geofizyka Górniczego Biblioteka Szkoły Eksploatacji Podziemnej, Kraków 1996, t. 3, s. 13-126.
3. Dubiński J.: Sejsmiczna metoda wyprzedzajacej oceny zagrożenia wstrząsami górniczymi w kopalniach węgla kamiennego, Prace Głównego Instytutu Górnictwa, Katowice 1989, 32-37
4. Dubiński J., Konopko W.: Tapania. Ocena, prognozowanie, zwalczanie, Główny Instytut Górnictwa, Katowice 2000, 198-266.
5. Goszcz A., Dworak J.: Określenie skłonności węgla do tąpań na podstawie analizy tektonofizycznej oraz pomiarów parametrów sprężystych pokładu metodą sejsmiczną w wyrobiskach górniczych kopalń, "Archiwum Górnictwa", 1982, Nr 1-2.
6. Goszcz A.: Dynamiczne moduły sprężystości pokładu węgla jako miernik jego skłonności do tapań, Publs. Inst. Geoph. Pol. Ac. Sc. z. M-6(176), 1985
7. Majcherczyk T., Szaszenko A., Sdwiżkowa E.: Podstawy geomechaniki. Wydawnictwa AGH, Kraków 2006, s. 203-218.
8. Marcak H., Zuberek W. M.: Geofizyka górnicza, Śląskie Wydawnictwo Techniczne, Katowice 1994, s 22-23.
9. Oset K., Chmielarz S., Augustyniak A.: Nowe rozwiązania w dzie dzinie mobilnej aparatury sejsmicznej - PASAT M, „Mechanizacja i Automatyzacja Górnictwa", 2010, Nr 8, s. 18-29.
10. Plewa M., PlewaS.: Petrofizyka, Wydawnictwo Geologiczne, Warszawa 1992.
11. Salustowicz A.: Zarys mechaniki górotworu, Wydawnictwo "Slask", Katowice 1968, s. 105-111.
12. Szreder Z., Pilecki Z., Ktosiński J.: Efektywność rozpoznania oddziaływania krawędzi eksploatacyjnych metodami profilowania tłumienia oraz prędkości fali sejsmicznej, „Gospodarka Surowcami Mineralnymi", 2008, t. 24, z. 2/3, 215-226.
13. Wojtecki Ł., Dzik G.: Profilowanie sejsmiczne ociosów chodników węglowych w wersji kinematycznej i tłumieniowej, „Mechanizacja i Automatyzacja Górnictwa", 2012, Nr 4, s. 29-37.

[^0]: ${ }^{\text {*) K K K }}$ Kania Węglowa S.A., Katowice **) Instytut Technik Innowacyjnych EMAG, Katowice

