Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel scheme for lesions classification in chest radiographs is presented in this paper. Features are extracted from detected lesions from lung regions which are segmented automatically. Then, we needed to eliminate redundant variables from the subset extracted because they affect the performance of the classification. We used Stepwise Forward Selection and Principal Components Analysis. Then, we obtained two subsets of features. We finally experimented the Stepwise/FCM/SVM classification and the PCA/FCM/SVM one. The ROC curves show that the hybrid PCA/FCM/SVM has relatively better accuracy and remarkable higher efficiency. Experimental results suggest that this approach may be helpful to radiologists for reading chest images.
Słowa kluczowe
Rocznik
Tom
Strony
97--103
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Faculty of law, economics and management of Jendouba, University of Jendouba, Tunisia
autor
- Faculty of law, economics and management of Jendouba, University of Jendouba, Tunisia
autor
- Faculty of economics and management of Nebeul, University of Carthage, Tunisia
Bibliografia
- [1] van Ginneken B, Hogeweg L, Prokop M. Computer-aided diagnosis in chest radiography: beyond nodules. Eur J Radiol. 2009;72(2):226-230.
- [2] Bogoni L, Ko JP, Alpert J, et al. Impact of a computer-aided detection (CAD) system integrated into a picture archiving and communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams. J Digit Imaging. 2012;25(6):771-781.
- [3] Lodwick GS. Computer-aided diagnosis in radiology: A research plan. Invest Radiol. 1966;1(1), 72-80.
- [4] Campadelli P, Casiraghi E, Valentini G. Lung nodules detection and classification. ICIP205. IEEE International Conference on Image Processing 2005. 2005: I-1117-1120.
- [5] Hardie RC, Rogers S, Wilson T, et al. Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal. 2008;12(3):240-258.
- [6] Yeung DS, Ng WWY, Wang D, et al. Localized generalization error model and its application to architecture selection for radial basis function neural network. IEEE Trans Neural Netw. 2007;18(5):1294–1305.
- [7] Hamidzadeh J, Monsefi R, Sadoghi Yazdi H. DDC: distance-based decision classifier. Neural Comput Applic. 2012;21(7):1697-1707.
- [8] Al Gindi, A., Rashed, E., & Sami, M. (2014). Development and Evaluation of a Computer-Aided Diagnostic Algorithm for Lung Nodule Characterization and Classification in Chest Radiographs using Multiscale Wavelet Transform.Journal of American Science, 10(2).
- [9] Zhou T, Lu H, Zhang J, et al. Pulmonary Nodule Detection Model Based on SVM and CT Image Feature-Level Fusion with Rough Sets. Biomed Res Int. 2016.
- [10] Froz BR, de Carvalho Filho AO, Silva AC, et al. Lung nodule classification using artificial crawlers, directional texture and suport vector machine. Expert Syst Appl. 2017;69:176-188.
- [11] Ben Hassen D, Taleb H, Yaacoub IB, et al. Classification of chest lesions with using fuzzy c-means algorithm and support vector machines. In: International Joint Conference SOCO’13-CISIS’13-ICEUTE’13 (pp. 319-328). Springer International Publishing. 2014.
- [12] Ben Hassen D, Taleb H, Ben Yaacoub I, et al. A fuzzy approach to chest radiography segmentation involving spatial relations. IJCA Special Issue on Novel Aspects of Digital imaging Applications (DIA). 2011;(1):40-47.
- [13] Ben Hassen D, Taleb, H. Automatic detection of lesions in lung regions that are segmented using spatial relations. Clin Imaging. 2013;37(3):498-503.
- [14] van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006;10(1):19-40.
- [15] Porebski A. Sélection d’attributs de texture couleur pour la classification d’images. Application à l’identification de défauts sur les décors verriers imprimés par sérigraphie [Doctoral dissertation]. Université Lille; 2009.
- [16] Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Trans Pattern Analysis and Machine Intelligence. 2000;22(1):4-37.
- [17] Kong H, Wang L, Teoh EK, et al. Generalized 2D principal component analysis for face image representation and recognition. Neural Networks. 2005;18(5):585-594.
- [18] Metz CE. ROC methodology in radiologic imaging. Invest Radiol. 1986;21(9):720-733.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08f7b539-831d-4f92-8dca-f338c645cc02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.