PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Continuous time non-smooth optimization through quasi efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The importance of quasi efficiency lies in its versatile nature as it permits a definite tolerable error that depend on the decision variables. This has been a motivating factor for us to introduce the notion of quasi efficient solution for the non-smooth multiobjective continuous time programming problem. Necessary optimality conditions are derived for this problem. To derive sufficient optimality conditions, the concept of approximate convexity has been extended to continuous case in this paper. A mixed dual is proposed for which weak and strong duality results are proved.
Rocznik
Strony
251--267
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Mathematics, Gargi College, University of Delhi, New Delhi 110049, India
  • Department of Mathematics, Gargi College, University of Delhi, New Delhi 110049, India
Bibliografia
  • Bellman, R. (1953) Bottleneck problems and dynamic programming. Proc. Natl. Acad. Sci. USA 39, 947–951.
  • Bhatia, D., Gupta A. and Arora, P. (2013) Optimality via generalized approximate convexity and quasiefficiency. Optimization Letters 7, 127–135.
  • Brandao, A. J. V., Rojas-Medar M. A. and Silva, G. N. (1998) Nonsmooth continuous-time optimization problems: sufficient conditions. J. Math. Anal. Appl. 227, 305–318.
  • Brandao, A. J. V., Rojas-Medar, M. A. and Silva, G. N. (2001) Nonsmooth continuous-time optimization problems: necessary conditions. Comput. Math. Appl. 41, 1477–1486.
  • Chuong, T. D. and Kim, D. S. (2016) Approximate solutions of multiobjective optimization problems. Positivity 20, 187–207.
  • Clarke, F. H. (1983) Optimization and Non-Smooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, Inc., New York.
  • Farr, W. H. and Hanson, M. A. (1974) Continuous-time programming with nonlinear constraints. J. Math. Anal. Appl. 45, 96–115.
  • Golestani, M., Sadeghi, H. and Tavan, Y. (2018) Nonsmooth multiobjective problems and generalized vector variational inequalities using quasi efficiency. J. Optim. Theory Appl. 179, 896–916.
  • Gupta, A., Mehra A. and Bhatia, D. (2006) Approximate convexity in vector optimization. Bull. Austral. Math. Soc. 74, 207–218.
  • Loridan, P. (1982) Necessary Conditions for ǫ-Optimality. Math Program. 19, 140–152.
  • Loridan, P. (1984) ǫ-solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276.
  • Mishra, S. K. and Upadhyay, B. B. (2013) Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency. Positivity 17, 1071–1083.
  • Nobakhtian S. and Pouryayevali, M. R. (2008a) Optimality criteria for nonsmooth multiobjective continuous-time problems. J. Optim. Theory Appl. 136, 69–76.
  • Nobakhtian, S. and Pouryayevali, M. R. (2008b) Duality for nonsmooth continuous-time problems of vector optimization. J. Optim. Theory Appl. 136, 77–85.
  • Reiland, T. W. (1980) Optimality conditions and duality in continuous programming I. Convex programs and a theorem of alternative. J. Math. Anal. Appl. 77, 329–343.
  • Reiland, T. W. and Hanson, M. A. (1980) Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems. J. Math. Anal. Appl. 74, 578–598.
  • Upadhyay, B. B., Stancu-Minasian, I. M. and Mishra, P. (2023) On relations between nonsmooth interval-valued multiobjective programming problems and generalized Stampacchia vector variational inequalities. Optimization 72, 2635-2659.
  • Upadhyay, B. B., Mishra, P., Mohapatra, R. N. and Mishra, S. K. (2019) On the applications of nonsmooth vector optimization problems to solve generalized vector variational inequalities using convexificators. Adv. Intell. Syst. Comput. 991. DOI: 10.1007/978-3-030-21803- 4 66.
  • Zalmai, G. J. (1985a) Optimality conditions and Lagrangian duality in continuous-time nonlinear programming. J. Math. Anal. Appl. 109, 426–452.
  • Zalmai, G. J. (1985b) The Fritz John and Kuhn-Tucker optimality conditions in continuous-time programming. J. Math. Anal. Appl. 110, 503–518.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08f3634c-f31c-4a9a-9a2b-ba3dec53b646
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.