Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Continuous-time Markov chains is an important subclass in stochastic processes, which have facilitated many applications in business decisions, investment risk analysis, insurance policy making and reliability modeling. It should be fully aware that the existing continuous-time Markov chains theory is merely an ideology under which the random uncertainty governs the phenomena. However, the real world phenomena are often revealing the randomness and vagueness co-existence reality and thus the probabilistic continuous-time Markov chains modeling practices may be not adequate. In this paper, we define the random fuzzy continuous-time Markov chains, explore the related average chance distributions, and propose a scheme for the parameter estimation and a simulation scheme as well. It is expecting that a foundational work can be established for reliability modeling and risk analysis, particularly, repairable system modeling.
Rocznik
Tom
Strony
123--132
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
autor
- University of Cape Town, Cape Town, South Africa
autor
- University of Cape Town, Cape Town, South Africa
autor
- University of Cape Town, Cape Town, South Africa
autor
- South African National Biodiversity Institute, Cape Town, South Africa
Bibliografia
- [1] Basawa, I. V., Rao, B. L. & Prakasa, S. (1990). Statistical Inference for Stochastic Processes. Academic Press, London.
- [2] Carvalho, H. & Machado, V. C. (2006). Fuzzy set theory to establish resilient production systems. Proc. of IIE Annual Conference and Exhibition.
- [3] Chan, J. K. & Shaw, L. (1993). Modelling Repairable systems with failure rates that depend on age & maintenance. IEEE Transactions on Reliability 42 (4), pp. 566-571.
- [4] Dohi, T. Aoki, T. Kaio, N. & Osaki, S. (2006). Statistical estimation algorithms for some repairlimit replacement scheduling problems under earning rate criteria. Computers & Math. Applic., 51, 345-356.
- [5] Grimmett, G. R. & Stirzaker, D. R. (1992). Probability and Random Processes. Second Edition. Clarendon Press, Oxford, London.
- [6] Guo, R. & Love, C. E. (1992). Statistical Analysis of An Age Model for Imperfectly Repaired System. Quality and Reliability Engineering International, 8: 133-146.
- [7] Guo, R. & Love, C. E. (2004). Fuzzy Covariate Modelling an Imperfectly Repaired System. Quality Assurance, 10 (37), 7-15.
- [8] Guo, R., Zhao, R. Q., Guo, D. & Dunne, T. (2007). Random Fuzzy Variable Modeling on Repairable System. Journal of Uncertain Systems, Vol. 1, No. 3, 222-234.
- [9] Guo, R. (2009). Stochastic Processes. Unpublished Lecture Notes.
- [10] Guo, R., & Guo, D. (2009). Statistical Simulating Fuzzy Variable. Proceedings of the Nineth International Conference on Information and Management Sciences, Kunming, China, 2009 (under-review).
- [11] Guo, R., Nyirenda, J., & Guo, D. (2009). Random Fuzzy Poisson Processes. Proceedings of Summer Safety and Reliability Seminars, July 19-25, Gdańsk-Sopot, Poland. (under review).
- [12] Kijima, M. (1989). Some Results for Repairable Systems with General Repair. Journal of Applied Probability, 26, 89-102.
- [13] Lim, T. J. & Lie, C. H. (2000). Analysis of system reliability with dependent repair models, IEEE Transactions on Reliability 49, 153-162.
- [14] Kolowrocki, K. (2007). Reliability modelling of complex system – part 1. Proceedings of the First Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland, 219-230.
- [15] Kolowrocki, K. (2007) Reliability modelling of complex system – part 2. Proceedings of the First Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland, 231-242.
- [16] Liu, B. D. (2004). Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Berlin: Springer-Verlag Heidelberg.
- [17] Liu, B. D. (2007). Uncertainty Theory: An Introduction to Its Axiomatic Foundations. 2nd Edition; Berlin: Springer-Verlag Heidelberg.
- [18] Love, C. E., Zhang, Z. G., Zitron, M. A., & Guo, R. (2000). A Discrete Semi-Markov Decision Model to Determine the Optimal Repair/Replacement Policy under General Repairs. European Journal of Operational Research, 125: 398-409.
- [19] Wang, H. & Pham, H. (1996). Optimal agedependent preventive maintenance policies with imperfect maintenance. International Journal of Reliability, Quality and SafetyEngineering, 3, 119-135.
- [20] Sheu, S. H., Lin, Y. B., & Liao, G. L. (2004). Optimum Policies with Imperfect Maintenance. Proceedings of the 2004 Asian International Workshop (AIWARM 2004), Advanced Reliability Modeling, Dohi, T. and Yun W. Y. Eds, 459-466.
- [21] Soszynska, J. (2007). Systems reliability analysis in variable operation conditions. Proceedings of the First Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland, 319-330.
- [22] Tamura, N. (2004). On a Markovian Deteriorating System with uncertain repair and replacement. Proceedings of the 2004 Asian International Workshop (AIWARM 2004), Advanced Reliability Modeling, Dohi, T. and Yun W. Y. Eds, 523-530.
- [23] Yun, W. Y., Lee, K. K., Cho, S. H. & Nam, K. H. (2004). Estimating Parameters of Failure Model for Repairable Systems with Different Maintenance Effects. Proceedings of the 2004 Asian International Workshop (AIWARM 2004), Advanced Reliability Modeling, Dohi, T. and Yun W. Y. Eds, 609-616.
- [24] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
- [25] Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3-28.
- [26] Zhang, Y. L., Yam, R. C. M., & Zuo, M. J. (2002). Optimal replacement policy for a multistate repairable system. Journal of the Operational Research Society, 53, 336-341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08f14e8e-be71-4a80-b49b-90f68eaa56c9