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1. Introduction 

It should be fully aware that vagueness is an intrinsic 
feature in today’s diversified business environments, 
just as Carvalho and Machado [2] commented, “In a 
global market, companies must deal with a high rate 
of changes in business environment. … The 
parameters, variables and restrictions of the 
production system are inherently vagueness.” 
Therefore the co-existence of random uncertainty 
and fuzzy uncertainty is inevitable reality of safety 
and reliability analysis and modelling.  
It is obvious that probabilistic modeling is only a 
good approximation to real world problem when 
random uncertainty governs the phenomenon. 
Philosophically, if fuzziness and randomness both 
appear then probabilistic modeling may be 
questionable. Therefore, it is logical to develop 
appropriate models for modeling fuzziness and 
randomness co-existence. 
Markov processes have been applied to large and 
complex system modeling and analysis in reliability 
literature, say, recent work of Kolowrocki, [14], [15], 

Love et al [18], Soszynska [21], and Tamura [22], 
etc. 
It is also noticed that in recent years researchers on 
the repairable system modeling, particularly, in 
Asian reliability communities, proposed repair 
impact scenario models, which are assumed that the 
repair impacts to a repairable system may be 
classified into several states: no improvement, minor 
improvement, medium improvement, and major 
improvement, and thus utilize Kijima’s age models 
[12] to estimate those repair effects on the system 
repair states for optimal maintenance policy decision 
making, see [3], [4], [13], [18], [19], [20], and [26]. 
However, less attention has been paid to the repair 
effect estimation, except a few authors, Guo and 
Love [6], [7], Lim and Lie [13], Yun et al [23], and 
etc. 
In this paper, we will give a systematic treatment for 
the random fuzzy continuous-time Markov chains 
only in the mathematical sense (building models 
based on postulates and definitions) but also in the 
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statistical sense (estimation and hypothesis testing 
based on sample data).   
 
2. Probabilistic continuous-time Markov 
chains 

Grimmett and Strizaker [5] and also Guo [9] describe 
continuous-time Markov chains by focusing the 
stochastic semigroup and the rate matrix. 

Let { }, 0tX X t= ≥  be a Markov chain with state 

space { }0,1,2, , 1N= −⋯S . Further, let  

 
   ( ) { }, Pr |ij t sp s t X j X i= = =                             (1) 

 
be the transition probabilities. For the stationary 
Markov chain 
 
   ( ) ( )0, , ,  ij ijp t s p s t s t− = ∀ <                              (2) 

 
Definition 1: (Grimmett and Strizaker [5]) A 
stochastic semigroup { }P P , 0t t= ≥ , with 

( )( )Pt ij N N
p t

×
=  satisfies the following properties: 

(a) 0P I= , an N N× identity matrix; 

(b) for t∀ , ( )0 1ijp t≤ ≤ , ( ) 1ijj
p t =∑ ; 

(c) The Chapman-Kolmogorov equations, for any 
, 0s t> , P P Pt s t s+ = .   

A stochastic semigroup { }P P , 0t t= ≥  is standard if 

0lim P It t↓ = .  

The characterization of a stochastic semigroup 
{ }P P , 0t t= ≥  can be stated as a theorem.  

Theorem 1: For a standard stochastic semigroup 
{ }P P , 0t t= ≥ , the limit  

 

   ( )
0

( ) 1
lim ii

i ii
h

p h
q q

h↓

−
=− =                                   (3) 

 
exists (maybe −∞ ), while the limit 
 

   
0

( )
lim ij

ij
h

p h
q

h↓
=                                                     (4) 

exists and is finite. 

Guo [9] details the proof Theorem 1. 

Definition 2: The matrixQ  

   

0 01 0, 1

10 11 1, 1

1,1 1,2 1, 1

Q

N

N

N N N N

q q q

q q q

q q q

−

−

− − − −

 −
 
 − =  
 
 −  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

                    (5) 

 
where 
 

    
0

( )
lim ij ij

ij
h

p h
q

h↓

−δ
=                                             (6) 

 

with 1,  ij i jδ = = , 0 otherwise. 

Lemma 1. In a matrixQ , 
 

   
1

1,

,  , 1,2, , 1
N

i ij
j j i

q q i j N
−

= ≠

= = −∑ ⋯                         (7) 

 
The rate matrix Q  characterizes the movements of 

the continuous-time Markov chain { }, 0tX X t= ≥ . 

The following theorem reveals such a fundamental 
fact.  

Theorem 2: If the process { }, 0tX X t= ≥  is 

currently holds at state i , it holds in state i  during 
an exponentially distributed time with parameter iq  , 
independently of how the process reached state i  
and how long it gets there. Furthermore, The process 

{ }, 0tX X t= ≥  leaves state i , and moves to state j  

with probability ( ) ij iq q i j≠ .  

Theorem 3. A standard stochastic semigroup 
{ }P P , 0t t= ≥  satisfies Kolmogorov equations:  

 

   
P P Q (Forward)

P QP  (Backward)

t t

t t

d

dt
d

dt

=

=
                                      (8) 

 
Corollary 1. A standard stochastic semigroup 

{ }P P , 0t t= ≥  satisfies 

 
   QP t

t e=                                                                 (9) 
 
where matrix 
 

   ( )Q

0

1
Q

!
it

i

e t
i

∞

=

=∑                                                  (10) 

It is well-established fact that every entry of Pt  , 

( )ijp t  can be expressed by a linear combination of 
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l teρ  with appropriate coefficient ( )c l , where lρ is the 
thl eigenvalue of Q  or an appropriate minor matrix 

of Q , i.e.,  
 

   ( ) ( )
1

0

l

N
t

ij
l

p t c l e
−

ρ

=

=∑                                             (11) 

 
Example 1: Two-state continuous-time Markov 
chain. Let the rate matrix  
 

   Q
 −ν ν
 =  λ −λ 

                                                   (12) 

 

The eigenvalues are ( ) ( )( )1 2, 0,ρ ρ = − ν+λ , thus 

   
( ) ( )

( ) ( )
P

t t

t
t t

e e

e e

− λ+ν − λ+ν

− λ+ν − λ+ν

 λ ν ν ν
 + −
 λ +ν λ+ν λ+ν λ+ν=  
 λ λ ν λ
 − + 
 λ +ν λ+ν λ+ν λ+ν 

(13) 

 
which confirms the formality of Equation (11). 
 
3. Foundation of random fuzzy processes 

Without a solid understanding of the intrinsic feature 
of random fuzzy processes, there is no base for 
exploring the modelling of random fuzzy continuous-
time Markov chains. Liu’s [16], [17] hybrid variable 
theory established on the axiomatic credibility 
measure and probability measure foundations 
provides the mathematical foundation. 
Guo, Nyirenda, and Guo [11] give a systematic 
review on random fuzzy variable theory. In order to 
shorten the current paper, we only keep necessary 
contents for notational clarity. For details, please see 
Section 2, in [10] or directly Liu’s books [16], [17]. 
First let us review the credibilistic fuzzy variable 
theory. Let Θ  be a nonempty set, and ( )ΘP  the 

power set on Θ .  
Definition 3: Any set function ( ) [ ]Cr : 0,1Θ →P  

satisfies Liu’s four Axioms [12], [13] is called a 

credibility measure. The triple ( )( ), ,CrΘ ΘP  is 

called the credibility measure space. 
Definition 4: A fuzzy variable ξ  is a measurable 

mapping, i.e., ( )( ) ( )( ): , ,ξ Θ Θ → R RP B . 

A fuzzy variable is not a fuzzy set in the sense of 
Zadeh’s fuzzy theory [20], [21], in which a fuzzy set 
is defined by a membership function. 

Definition 5: (Liu [16, 17]) The credibility 
distribution [ ]: 0,1Λ →R  of a fuzzy variable ξ  on 

( )( ), ,CrΘ ΘP  is 
 

   ( ) ( ){ }Crx xθ ξ θΛ = ∈ Θ ≤  (14) 

  

Liu [13], [14] defines a random fuzzy variable as a 
mapping from the credibility space ( ),2 ,CrΘΘ  to a set 

of random variables.   
Definition 6: A random fuzzy variable, denoted as 

( ){ },Xβ θξ = θ∈Θ  , is a collection of random 

variables Xβ  defined on the common probability 

space ( ), PrΩ A,  and indexed by a fuzzy variable 

( )β θ  defined on the credibility space ( ),2 ,CrΘΘ .  

Definition 7: (Liu [16], [17]) Let ξ  be a random 
fuzzy variable, then the average chance measure 

denoted by {}ch ⋅ , of a random fuzzy event 

{ }xξ≤ , is     

  

   { } ( ){ }{ }
1

0

ch Cr |Pr dx xξ ≤ = θ ∈Θ ξ θ ≤ ≥α α∫     (15) 

 
Then function ( )Ψ ⋅  is called as average chance 

distribution if and only if 
 
   ( ) { }chx xΨ = ξ≤                                                (16) 

 
Definition 8: A random fuzzy process is a family of  
random fuzzy variables defined on the common 

Product measure space ( ) ( ),2 ,Cr , PrΘΘ × Ω A, , 

denoted by { },t tξ = ξ ∈T , where T  is called as the 

index set. 
Theorem 4: Let ζ  be a fuzzy variable defined on the 

credibility space ( )( ), ,CrPΘ Θ  and τ  be a random 

variable defined on the probability space ( )( ), ,PΩ ΩA , 

then 
(1) Let ⊕  be an arithmetic operator, which can be 

“ + ”, “ − ”, “ × ” or “ ÷ ” operation, such that ζ τ⊕  
maps from ( )( ), ,CrΘ ΘP  to a collection of random 

variables on ( )( ), ,PΩ ΩA , denoted by ξ . Then ξ  is 

a random fuzzy variable defined on hybrid 
product space ( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

(2) Let :f × →R R R be a continuous, such that ( ),f ζ τ  
maps from ( )( ), ,CrΘ ΘP  to a collection of random 
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variables on ( )( ), ,PΩ ΩA , denoted by ξ . Then 

( ),fξ ζ τ=  is a random fuzzy variable defined on 
hybrid product space ( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

(3) Let ( );F x θ  be the probability distribution of 
random variable τ with parameter θ  (possible 
vector-valued), then ( );F x ζ  defines a random 
fuzzy variable ξ  on the hybrid product space 

( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

Note that the Theorem 4 merely repeats facts stated 
in Liu’s books, [16], [17].  
  
4. Stationary random fuzzy continuous-time 
Markov chain 

Let { }, 0tX X t= ≥  be a Markov process with a 

standard stochastic semigroup { }P P , 0t t= ≥  having 

a fuzzy rate matrixQ defined on credibility space 

( )( ), ,CrΘ ΘP  with credibility distribution function 

matrix ( )ij N N×
Λ= Λ . Then by a direct application of 

Theorem 4, item (3), a random fuzzy continuous-
time Markov chain can be obtained.  

Definition 9: A process is called as random fuzzy 
continuous-time Markov chain { }, 0t tξ= ξ ≥  taking 

values in set { }0,1,2, , 1N= −⋯S , if   

(a) { }, 0t tξ= ξ ≥  satisfies Markov property:  

 

   
{ }

{ }
1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

ξ = ξ = ξ = ξ =

= ξ = ξ =

⋯

                   (17) 

 

for all 1 2t t s t< < < <⋯  and any 1 2, , , ,i i i j ∈⋯ S . 

(b) the stochastic semigroup { }P P , 0t t= ≥  is 

standard; 
(c) if   the fuzzy rate matrix 
 

   ( )
0

P I
Q lim t

ij N N t
q

t× ↓

−
= =                                       (18) 

 

is defined on credibility space ( )( ), ,CrΘ ΘP  with 

credibility distribution function matrix ( )ij N N×
Λ= Λ . 

It is obvious that in Definition 9 for a given value of 
matrix 0Q Q= , { }, 0t tξ= ξ ≥  is a probabilistic 

continuous-time Markov chain. However, if Q  is a 
fuzzy matrix, then for any given time t , the count 

tξ is a random fuzzy variable according to Theorem 
5. Therefore, Definition 9 defines a stationary 
random fuzzy Poisson process.  

Theorem 5: If the process { }, 0t tξ= ξ ≥  is currently 

holds at state i , it holds in state i  during an 
exponentially distributed time with fuzzy parameter 

iq  , independently of how the process reached state 
i  and how long it gets there. Furthermore, The 
process { }, 0t tξ= ξ ≥  leaves state i , and moves to 

state j  with a fuzzy probability ( ) ij iq q i j≠ .  

Proof: A straightforward application of Definition 9 
and Theorem 2. 
Corollary 2: If ijq  ( )i j≠ , , 0,1, , 1 i j N= −⋯ , 

follow piecewise linear credibility distributions 
 

   ( )
( )

( )

0        

 
2

,  
2

2

1          

ij

ij
ij ij

i ij

ij
ij ij

ij ij

ij ij

ij

x a

x a
a x b

b a
x i j

x c b
b x c

c b

x c

 < − ≤ < −Λ = ≠ + − ≤ < − ≥

      (19) 

 
The holding times, denoted by iT , 0,1, , 1i N= −⋯ , 
are independent random fuzzy exponential variable 
with fuzzy parameter i ijj

q q=∑  following a 

piecewise linear credibility distribution 
 

   ( )
( )

( )

0        

 
2

,  
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x

x c b
b x c

c b

x c

 < − ≤ < −Λ = + − ≤ < − ≥

                 (20) 

 
 where 
 

   

1

1,

1

1,

1

1,

N

i ij
j j i

N

i ij
j j i

N

i ij
j j i

a a

b b

c c

−

= ≠

−

= ≠

−

= ≠

 = = =

∑

∑

∑

                                                    (21) 

 
and thus the average chance distributions are 
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( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

i i i i

i i

b t a t c t b t

i i i i

t q t

e e e e

b a t b c t

− − − −

Ψ ≥− −

− −
= + +

− −

∫ θ θ α α

        (22) 

 
Proof: Note that 
 

   ( ){ }Pr 1 iq t
iT q t e−≤ = −                                    (23) 

 

Therefore event ( )( ){ }{ }: Pr iT q t≤ ≥θ θ α  is a 

fuzzy event and is equivalent to the fuzzy event 

( ) ( ){ }: ln 1iq t≥− −θ θ α . As a critical toward the 

derivation of the average chance distribution, it is 
necessary to calculate the credibility measure for 

fuzzy event ( ) ( ){ }: ln 1iq t≥− −θ θ α , i.e., obtain 

the expression for 
 

   ( ) ( ){ }Cr : ln 1iq t≥− −θ θ α                          (24) 

 
Recall that for the credibilistic fuzzy 

variable, i ijj i
q q

≠
=∑ , the credibility measure 

takes the form 
 

   ( ){ }
( )

( )

1           

2
 

2
Cr : ,  

    
2

0           

i

i i
i i

i i

i
i

i i
i i

i

x a

b a x
a x b

b a
q x

c x
b x c

c b

x c

 < − − ≤ < −> = − ≤ < − ≥

θ θ    (25) 

 
Accordingly, the range for integration with α can be 
determined as shown in Table 1. Recall that the 

expression of ( )ln 1x tα=− −  appears in 

Equation (25), which facilitates the link between 
intermediate variable α  and average chance 
measure. 
The average chance distribution for the exponentially 
distributed random fuzzy lifetime is then derived by 
splitting the integration into five terms according to 
the range of α  and the corresponding mathematical 
expression for the credibility measure 

( ) ( ){ }Cr : ln 1iq t≥− −θ θ α , which is detailed in 

the following Table 1. 
 
 

Table 1.  Range analysis for α  
 

x  α  and credibility measure expression 

x a−∞< ≤

 

Range for α  0 1 ate−≤ ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  1 

a x b< ≤  Range for α  1 1at bte e− −− < ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  ( ) ( )( )1 2x a b a− − −  

b x c< ≤  Range for α  1 1bt cte e− −− < ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  ( ) ( )2c x c b− −  

d x< <+∞

 

Range for α  1 1dte−− < ≤α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  0 

 
Then the exponential random fuzzy lifetime has an 
average chance distribution function:  
 

   
( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

bt at dt ct

t t

e e e e

b a t d c t

− − − −

Ψ ≥− −

− −
= + +

− −

∫ θ λ θ α α

 

 
and the average chance density is 
 

   
( )

( ) ( )

( ) ( )

2

2

t =
2 2

       
2 2

at bt bt at

ct dt ct dt

e e be ae

b a t b a t

e e ce de

d c t d c t

− − − −

− − − −

− −
+

− −

− −
+ +

− −

ψ
                          (26) 

 
This concludes the proof. 
Similar to the probabilistic reliability theory, we 
define a reliability function or survival function for a 
random fuzzy lifetime and accordingly name it as the 
average chance reliability function, which is defined 
accordingly as 
 

   ( ) ( )1t tΨ = −Ψ                                                (27) 

 
Then, for exponential random fuzzy lifetime, its 
average chance reliability function is 
 

   ( )
( ) ( )

=
2 2

at bt ct dte e e e
t

b a t d c t

− − − −− −
Ψ +

− −
                      (28) 

 
Remark 1: The average chance distributions of jump 
probabilities ij jq q do not have closed forms, which 

require the application of Zadeh’s [25] extension 
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theorem. However, the values of fuzzy probability 

ij jq q  fall in intervals 

 

min , ,max ,ij ij ij ij

ij ij ij ijj i j i j i j i

a c a c

a c a c
≠ ≠ ≠ ≠

                      ∑ ∑ ∑ ∑
 (29) 

 
which will help the explorations on the process 

{ }, 0t tξ= ξ ≥ . 

 
5. Non-stationary random fuzzy continuous-
time Markov chain 

The probabilistic non-stationary continuous-time 
Markov chain is an extension to the stationary one 
except the rate matrix is function of time, i.e., time-
dependent. Therefore, a non-stationary random 
fuzzy continuous-time Markov chain can be 
defined as follows. 

Definition 10: A process is called as random fuzzy 
continuous-time non-stationary Markov chain 

{ }, 0t tξ= ξ ≥  taking values in state space 

{ }0,1,2, , 1N= −⋯S , if   

(a) { }, 0t tξ= ξ ≥  satisfies Markov property:  

 

   
{ }

{ }
1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

ξ = ξ = ξ = ξ =

= ξ = ξ =

⋯

                   (30) 

 

for all 1 2t t s t< < < <⋯  and any 1 2, , , ,i i i j ∈⋯ S . 

(b) for s t∀ < , ( ) { }, Pr |ij t sp s t j i= ξ = ξ = , the 

transitional probabilities satisfy 
 (i) for a small time-increment h, { }, 0t tξ= ξ ≥  

moves from state i  to state j  with (fuzzy) 
probability: 
 
   ( ) ( ) ( ) ( ),  0ij ijp t t h q t h o h h i j+ = + ↓ ≠                (31) 

 
 (ii) for a small time-increment h, { }, 0t tξ= ξ ≥  

remaining in state i  with (fuzzy) probability:  
 
   ( ) ( ) ( ), 1  0ii ip t t h q t h o h h+ = − + ↓                      (32) 

 
where rate functions 
 

   ( ) ( )
1

0,

,  0,1, , 1
N

i ij
j j i

q t q t i N
−

= ≠

= = −∑ ⋯                      (33) 

(c) The parameters of rate functions, i.e., the entries 
of the fuzzy rate matrix ( ) ( )Q ( )ij N N

t q t
×

=  are 

credibilistic fuzzy variables defined on the common 
credibility measure space ( )( ), ,CrΘ ΘP . 

 Theorem 5. If the process { }, 0t tξ= ξ ≥  is currently 

holds at state i , it holds in state i  during an 
exponentially distributed time with fuzzy parameter 

( )iq t  , independently of how the process reached 

state i  and how long it gets there. Furthermore, The 
process { }, 0t tξ= ξ ≥  leaves state i , and moves to 

state j  with a fuzzy probability ( ) ( ) ( ) ij iq t q t i j≠ .  

Corollary 3: The probability distribution of holding 
times given the current state 

1 1lw lx
− −ξ = ∈S ,  

 

    
{ }

( )( ) ( )( )
1

1 1

1 1

1 1

Pr ,

exp

l

l l

l l w l

x l x l

W w t x

m w t m w t

−

− −

− −

− −

− > ξ = =

− + − +
           (34) 

 
where 

   ( ) ( )
0

t

i im t q u du= ∫                                             (35) 

is called the thi integrated rate function. 
Example 2: Assume a linear rate function:  
 

   ( ) ( )0, 1, 0, 1,,  , 0,  0ij ij ij ij ijq t t j i=β +β ≠ β > β >    (36) 

 
Further, we assume that 0β  and 1β both have 
piecewise linear credibility distribution:  
 

   ( ) ( )

( )

( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( )

0        

 
2

,  0,1
2

2

1          

k
ij

k
k kij

ij ijk k
ij ij

k
ij k k

k kij ij
ij ijk k

ij ij

k
ij

x a

x a
a x b

b a
x k

x c b
b x c

c b

x c

 < − ≤ < −Λ = = + − ≤ < − ≥

              (37) 

 
Then the diagonal entries ( )iq t , 0,1, , 1i N= −⋯ , 

have credibility distributions 
 

   ( )
( )

( )

0        

 
2

,  0,1, , 1
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x i N

x c b
b x c

c b

x c

 < − ≤ < −Λ = = − + − ≤ < − ≥

⋯             (38) 
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where 
 

   

( ) ( )( )

( ) ( )( )

( ) ( )( )

1
0 1

0

1
0 1

0

1
0 1

0

N

i ij ij
j

N

i ij ij
j

N

i ij ij
j

a a a t

b b b t

c c c t

−

=

−

=

−

=

 = + = + = +

∑

∑

∑

                                     (39) 

 
The integrated diagonal entries of ( )Q t :  

 

   ( ) 2
0, 1,i i im t t t=β +β                                          (40) 

 
 will have a credibility distributions: 
 

   ( ) ( )
( )

( )

0        

 
2

2

2

1          

i

i

i
i i

i i

m t
i i

i i
i i

i

y A

y A
A y B

B A
y

y C B
B y C

C B

y C

 < − ≤ < −Λ = + − ≤ < − ≥

            (41) 

 
Where 
 

   

( ) ( )( )

( ) ( )( )

( ) ( )( )

1
0 1 2

0

1
0 1 2

0

1
0 1 2

0

N

i ij ij
j

N

i ij ij
j

N

i ij ij
j

A a t a t

B b t b t

C c t c t

−

=

−

=

−

=

 = + = + = +

∑

∑

∑

                                      (42) 

 

In general, the credibility distribution of the 
integrated intensity function( )m t , it is necessary to 

apply Zadeh’s [25] extension principle, denoted as 

( )im tΛ , but for the piecewise linear credibility 

distribution case, the mathematical arguments are 
relatively simple. 
Now let us derive the average chance distribution for 
the first holding times at thi  state (the initial state).   
 

   ( ) ( ){ }( )
1

1

0

Cr : PrT t T t dΨ = θ θ ≤ ≥α α∫   

      
 Note that for the first arrival time, 

   

( ){ }{ }
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( ){ }
( ) ( ){ }

1

0 1

0

: Pr

:1 exp

:1

: ln 1

t

m t

T t

u du

e

m t

−

θ θ ≤ ≥α

     = θ − − β +β ≥α       

= θ − ≥α

= θ ≥− −α

∫
 

 
Therefore, the average chance distribution for 1T , the 
first holding at state i, is 
 

   

( )

( ){ }( )

( )( )

1

1

0

1

0

Cr : Pr

Cr : ( ) ln 1

iT t

T t d

m t d

Ψ

= θ θ ≤ ≥α α

= θ ≥− −α α

∫

∫

         

 
It is noticed that ( )ln 1y=− −α , therefore,  
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Hence,  
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4. A parameter estimation scheme  

The parameter estimation is in nature an estimation 
problem of credibility distribution from fuzzy 
observations. Guo and Guo [10] recently proposed a 
maximally compatible random variable to a 
credibilistic fuzzy variable and thus the fuzzy 
estimation problem is converted into estimating the 
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distribution function of the maximally compatible 
random variable. The following scheme is for 
estimating the piecewise linear credibility 
distribution. 
Definition 11:  Let X  be a random variable defined 
in ( )( ),R RB  such that 

 

   Crc P Xµ ξ µ− −= = =1 1
� �  (43) 

 
Then X  is called a maximally compatible to fuzzy 
variableξ . 
In other words, random variableX can take all the 
possible real-values the fuzzy variable ξ  may take 

with and the distribution of X  , ( )XF r  equals the 

credibility distribution of ξ , ( )rξΛ  for all r ∈R . 

It is aware that the induced measure Crcµ ξ −= �
1  and 

measure P Xµ −= 1
�  are defined on the same 

measurable space ( )( ),R RB . Furthermore, we notice 

that the pre-image ( ) ( )Bξ − ∈ Θ1 P , but, the pre-image 

( ) ( ) ( )X B− ∈ Θ ⊂ Θ1 A P , which implies that for the 

same Borel set ( )B∈ RB ,  the pre-images under 

fuzzy variable ξ  and random variable are not the 
same. It is expected that  
 
   ( ){ } ( ){ }: :X r rθ ∈Θ θ ≤ ⊆ θ ∈Θ ξ θ ≤      

 
but  
 
   ( ){ } ( ){ }Pr : Cr :X r rθ ∈Θ θ ≤ = θ ∈Θ ξ θ ≤        

     
The statistical estimation scheme for parameters 

( ), ,a b c  of the credibility distribution based on fuzzy 

observations { }1 2, , , nx x x⋯  can be stated as: 

Estimation Scheme 1.  
Step 1: Rank fuzzy observations { }1 2, , , nx x x⋯ to 

obtain “order” statistics ( ) ( ) ( ){ }1 2, , , nx x x⋯  in 

ascending order; 
Step 2: Set ( )1â x=  and ( )ˆ

nc x= ; 

Step 3: Set a tentative estimator for b ,  
 

   ( ) ( )14
ˆ

2

n n

e

x x x
b

− −
=  (44) 

 
where 
 

   
1

1 n

n i
i

x x
n =

= ∑  (45) 

Step 4: Identify ( )0i
x  from ( ) ( ) ( ){ }1 2, , , nx x x⋯  such 

that ( ) ( )10 e ii
ˆx b x≤ <  and 0 11 i i< < , then we may see 

( ) ( ) ( ){ }
01 2, , , ix x x⋯  as a set of order statistics from 

uniform [a,b]. Hence the “sufficient” statistic for 
parameter b  is ( )0i

x . 

Then ( ) ( ) ( ) ( )( )
01

ˆˆ ˆ, , , , nia b c x x x=  is the parameter 

estimator for the piecewise linear credibility 
distribution.  
 

   ( )
( )

( )

ˆ0      

ˆ ˆˆ
ˆ ˆ2

ˆ
ˆˆ 2 ˆ ˆ

ˆˆ2

ˆ1         

x a

x a
a x b

b a
x

x c b
b x c

c b

x c

<
 − ≤ <
 −
Λ = 

+ − ≤ <
 −

 ≥

   (46) 

 
The next issue is how to extract the information on 
matrix rate Q  in stationary random fuzzy the 
continuous-time Markov chain. Basawa and Rao [1] 
developed maximum likehood procedure for 
estimating the entries ijq in Q . Interested readers may 

check Chapter 5 and 8 of [1]. 
It is noticed that for a given random fuzzy 
continuous-time Markov chain { },t t tξ= ξ ≥ , if we 

fix the fuzzy rate matrix at a given value 0Q , then 

{ },t t tξ= ξ ≥  becomes a probabilistic continuous 

Markov chain, Form the sample of the process: 

( ) ( ) ( ){ }1 1 2, 0 , , , , , N NK N X W X W W W X W
τ ττ τ= + +⋯  , 

which is sufficient. Then an MLE estimator for 0Q  , 

denoted as 0Q̂  is obtained. Repeat the sampling 
procedure from the random fuzzy continuous-time 
Markov chain as many times as possible, say, m  
times, then the fuzzy rate matrix “observation” 
sequence is  
 

   { } ( )( ) ( )( ) ( )( ){ }1 2
1 2

ˆ ˆ ˆ ˆ ˆ ˆQ ,Q , ,Q , , , m
m ij ij ijq q q=⋯ ⋯         (47) 

 
Apply the Estimation Scheme 1 to the estimated 

observations ( ),
th

i j  entry of rate matrix Q  
( ) ( ) ( ){ }1 2ˆ ˆ ˆ, , , m
ij ij ijq q q⋯ , then the piecewise linear 

credibility distribution shown in Equation (54) for 

ijq .  
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For the non-stationary random fuzzy continuous-time 
Markov chain, the parameters specifying the rate 
matrix ( )Q ;t β , may use maximum likelihood 

estimation procedure for estimating the parameters 
for defining fuzzy parameters β . Therefore the idea 

is similar to that of stationary case but the credibility 
distribution treatments involved may be very 
complicated since Zadeh’s extension principle [25] 
must be applied.  mean measure involves two linear 
piecewise credibility distributions for fuzzy 
parameters 0β  and 1β  respectively.  
 
5. A simulation scheme 

Simulation of a random fuzzy continuous-time 
Markov chain is intrinsically two-stage procedure: a 
fuzzy parameter simulation for generating 

realizations ( )( ) ( )( ) ( )( ){ }1 2, , , m
ij ij ijq q q⋯  from an matrix of 

credibility distribution functions ( )ijΛ  and then for 

each realization of ( )ijq , a probabilistic continuous-

time Markov chain is simulated. Repeat this 
procedure until all the ( )ijq  realizations are used. 

As to the fuzzy parameter simulation, we utilize the 
maximally compatible random variable to a fuzzy 
variable concept and the inverse transformation of 
the probability distribution function approach for 
generating fuzzy variable realizations. An algorithm 
is stated as follows:  
Simulation scheme 1: 
Step 1: Simulating uniform random variable 
uniform[0,1], and denote the simple random 
sample as { }, , , nu u u

1 2
⋯ ; 

Step 2: Set ( ) ( ),  , , ,i ix u k nΛ = = ⋯1 2 ; 

Step 3: Set ( ),  , , ,ix i n= 1 2⋯ : 
 

   
( )

( )
2 if 0 0.5

2 2 if  0.5 1
i i

i
i i

a b a u u
x

b c c b u u

 + − ≤ ≤= − + − ≤ ≤
             (48) 

 
Then { }, , , nx x x

1 2
⋯ is a sample from the fuzzy 

variableξ  with a piecewise linear credibility 
distributionΛ . 
 Step 4: Repeat Step 1 to Step 3, until m realizations 
of fuzzy rate matrix { }1 2Q ,Q , ,Qm⋯  are obtained. 

Step 5: For each rate matrix, say, Qi , simulate a 
probabilistic continuous-time Markov chain, until m 
set of realizations of random fuzzy continuous-
time Markov chain are obtained. 
It should be mentioned that simulating a probabilistic 
continuous-time Markov chain is well-established in 
the literature. 

6. Conclusion 

In this paper, we give a systematic treatment of 
random fuzzy continuous-time Markov chains not 
only from the stationary one and then non-stationary 
one, but also a parameter estimation scheme as well 
as a simulation scheme is proposed. In this way, the 
foundation for the random fuzzy continuous-time 
Markov chains is formed although in its early stage. 
The applications to reliability engineering fields and 
the risk analysis now can extend from random 
uncertainty only cases to randomness and fuzziness 
co-existence cases. It is expecting that this 
development will help the reliability and risk 
analysis researchers as well as reliability analysts and 
engineers. 
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