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Abstract

Continuous-time Markov chains is an important sagglin stochastic processes, which have facilitatzaly
applications in business decisions, investmentarsiysis, insurance policy making and reliabifitgdeling.

It should be fully aware that the existing continsdime Markov chains theory is merely an ideologger
which the random uncertainty governs the phenométmvever, the real world phenomena are often
revealing the randomness and vagueness co-existelatity and thus the probabilistic continuous-time
Markov chains modeling practices may be not adeqult this paper, we define the random fuzzy
continuous-time Markov chains, explore the relagdrage chance distributions, and propose a schame
the parameter estimation and a simulation schemeedls It is expecting that a foundational work claa
established for reliability modeling and risk arsady particularly, repairable system modeling.

1. Introduction Love et al [18], Soszynska [21], and Tamura [22],

. ... etc.
It should be fully aware that vagueness is anriaici It is also noticed that in recent years researchars

feature in today’s diversified business environragnt ; . . .
. the repairable system modeling, particularly, in
just as Carvalho and Machado [2] commented, “In a P e sy 0 g P y

. ) . Asian reliability communities, proposed repair
global market, companies must deal with a high ratr‘l‘mpact scenario models, which are assumed that the

of changes in business environment. ... Therepair impacts to a repairable system may be

parame.ters, variables anq restrictions ~ of th?classified into several states: no improvement,omin
production system are inherently vagueness.

Theref th ist ¢ g taint improvement, medium improvement, and major
eretore he co-existence of random uncertain yimprovement, and thus utilize Kijima's age models
and fuzzy uncertainty is inevitable reality of dgfe

and reliability analvsis and modellin [12] to estimate those repair effects on the system
It is obvioug thatyprobabilistic mogéling is only a replz:ur states 1Eo]r cEp]tlrr[laI]mE':uni[er[]an]cT p(i)llcyg%my

. . making, see [3], [4], [13], [18], [19], [20], an@4§)].
gooOcli approxm?t!op to real wor:ﬁ prol;lem when However, less attention has been paid to the repair
random uncertainty —governs e p enomenon'effect estimation, except a few authors, Guo and

Philosophically, if fuzziness and randomness both -~ [6], [7], Lim and Lie [13], Yun et al [23], @n
appear then probabilistic modeling may be etc o | |

questionable. Therefore, it is logical to develop
appropriate  models for modeling fuzziness and
randomness co-existence.

Markov processes have been applied to large ana
complex system modeling and analysis in reliability
literature, say, recent work of Kolowrocki, [1419],

In this paper, we will give a systematic treatmiemnt

the random fuzzy continuous-time Markov chains
nly in the mathematical sense (building models
ased on postulates and definitions) but also é th

123



Guo Renkuan, Nyirenda Juwa, Dunne Tim, Guo Danni
Random fuzzy continuous-time Markov processes

statistical sense (estimation and hypothesis tgstin —Q, Oy Oon_1
based on sample data).
Q: Oho Oy Ohin-1 (5)
2. Probabilistic continuous-time Markov : : ' :
chains Onv-i: Oneiz 0 —Oheane
Grimmett and Strizaker [5] and also Guo [9] deserib h
continuous-time Markov chainsy focusing the WN€'®
stochastic semigroup and the rate matrix. o (h)—6
L AL
Let X ={X,t>0} be a Markov chain with state 10— 1, ~ % 6)
spaceS=1{0,1,2;-- N— }. Further, let
with 6ij =1, i=j,0otherwise.
pi(st)=Pr{X=jIX=1 1) .
(89 tX X=1 Lemma 1In a matrixQ,
be the transition probabilities. For the stationary -
Markov chain q = g, i, j=12; N—1 (7)

1
=

j=1j=i
P (0t—9s)= R(sh,Vs< i 2
The rate matrixQ characterizes the movements of

Definition 1 (Grimmett and Strizaker [b]A the continuous-time Markov chaiX :{Xt,tz 0}_

stochastic ~ semigroup P={Rt>Q, with  The following theorem reveals such a fundamental
R =(p, (1), , satisfies the following properties: fact
(a) P, = I, an N x N identity matrix; Theorem 2 If the process X ={X,t>0} is
_ currently holds at state, it holds in state during
(b) for v, 0< p; (1)<, > p(1)=1; an exponentially distributed time with parametgr,

(c) The Chapman-Kolmogorov equations, for anyindependently of how the process reached state
St>0 P _—PP ’ and how long it gets there. Furthermore, The poces
y v lt4s T Tt st

X ={X,,t>0} leaves staté, and moves to stat¢
A stochastic semigrouP={R 1> @ is standard if  ith probability ¢ /q (i= ).

lim, P =1.

Theorem 3 A standard stochastic semigroup
The characterization of a stochastic semigroupp:{glz q satisfies Kolmogorov equations:
P={Rt> Q can be stated as a theorem.

Theorem 1 For a standard stochastic semigroup iPt: R Q (Forward)
P={RP1> ¢, the limit dt (8)

h|0 h

—q (: of ) (3)
Corollary 1 A standard stochastic semigroup
exists (maybe-—cc ), while the limit P={R1=> § satisfies
 (h P=e¥ 9
lim P q (4) ' ©

. e where matrix
exists and is finite.

Guo [9] details the prodFheorem 1 o _ il
Definition 2 The matrixQ o !
It is well-established fact that every entry Bf ,

p; (t) can be expressed by a linear combination of

(QY) oj1
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e with appropriate coefficient(l), wherep, is the ~ Definiton & (Liu [16, 17]) The credibility

I"™ eigenvalue ofQ or an appropriate minor matrix distribution A:R - [0,]] of a fuzzy variable¢ on

of Q, i.e., (©,38(©).Cr) is

z

By (=" cl1)e" ay  AG)=cr{enel¢(e)s 4 (1)

I
o

Example 1 Two-state continuous-time Markov Lju [13], [14] defines a random fuzzy variable as a
chain. Let the rate matrix mapping from the credibility spade,2°,Cr) to a set

of random variables.

Q= ;\U U)\ (12) Definition & A random fuzzy variable, denoted as
B E:{Xﬁ(e),OD@} , is a collection of random
The eigenvalues a,($l,p2):(0,_(u+>\)>’ thus variables X, defined on the common probability
space (Q,2,Pr) and indexed by a fuzzy variable
N LV g VLV e B(8) defined on the credibility spa¢e,2” Cr).
N N N A _ .
R= ;\LU ;\ru ju ;FU (13)  Definition 7 (Liu [16], [17]) Let £ be a random
—(N+v)t —(N+v)t
)\JFV—X—JFVG(H m+me( " fuzzy variable, then the average chance measure
denoted by ch{:}, of a random fuzzy event
which confirms the formality of Equation (11). {‘é < x}, is

3. Foundation of random fuzzy processes

1
Without a solid understanding of the intrinsic feat chig <x}= f C{oeOIPHe(0)< X} >afd  (15)
of random fuzzy processes, there is no base for 0

exploring the modelling of random fuzzy continuous-

time Markov chains. Liu’s [16], [17] hybrid varigbl Then function \If() is called as average chance
theory established on the axiomatic credibility gistribution if and only if

measure and probabilty measure foundations

provides the mathematical foundation. _ w(x)=ch{g<x} (16)

Guo, Nyirenda, and Guo [11] give a systematic

review on random fuzzy variable theory. In order to __ .. .. . .
shorten the current paper, we only keep necessa&efm't'on 8 A rand_om fuzzy process is a family of

contents for notational clarity. For details, pease andom fuzzy variables defined on the common
Section 2, in [10] or directly Liu's books [16], 7L Product measure space(©,2°,Cr)x(Q 2, Py,

First let us review the credibilistic fuzzy variebl yaonoted by ={¢,.teT}, whereT is called as the
theory. Let® be a nonempty set, ang$(®) the index set t

povx./e.r.set oro. _ Theorem 4Let ¢ be a fuzzy variable defined on the
Definition 3 Any set function Cr:¥(0) (0.4 co ity space(©,%3(©),Cr) and 7 be a random

satls.ﬂ?-s Liu's four Axioms _[12]’ [13]s called- a variable defined on the probability spagex().p),
credibility measure. The tnple(@,‘B(@),Cr) is

then
called the credibility measure space. (1)Let 0 be an arithmetic operator, which can be
Definition 4 A fuzzy variable £ is a measurable “umow_m o« or .7 operation, such thapor
mapping, i.e.£:(©,%(0)) - (R,B(R)). maps from(e,3(e).cr) to a collection of random

A fuzzy variable is not a fuzzy set in the sense of variables on(o2(),P), denoted bys. Then¢ is

Zadeh's fuzzy theory [20], [21], in which a fuzzgts a random fuzzy variable defined on hybrid
is defined by a membership function. product spacée,1(e),cr)x(2.2(Q) ).

(2)Let f:rRxR - Rbe a continuous, such thats,r)
maps from(e,g(e).cr) to a collection of random
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variables on(e2(q).P), denoted bys. Then  Theorem 5If the process. = {¢,,t > 0} is currently
¢=1(¢,r) is a random fuzzy variable defined on holds at statei, it holds in statei during an
hybrid product spacge,(e),cr)x(Q.2(Q).P). exponentially distributed time with fuzzy parameter

(3)Let F(x6) be the probability distribution of ,independently.of how the process reached state
random variabler with parameters (possible | and how long it gets there. Furthermore, The
vector-valued), thenr(x¢) defines a random processt={¢,,t>0} leaves staté, and moves to
fuzzy variable ¢ on the hybrid product space state j with a fuzzy probabilityqij/q (i¢ j)_
(0.3(0).cr)x(.2(Q) P). Proof A straightforward application ddefinition 9

Note that theTheorem 4merely repeats facts stated andTheorem 2.

in Liu's books, [16], [17]. Corollary 2 If g (i=j), i,j=01N-1,

4. Stationary random fuzzy continuous-time follow piecewise linear credibility distributions

Markov chain

0 X< g
Let X ={X,,t>0} be a Markov process with a X— g e
standard stochastic semigroép={R > ¢ having 2(h—q) & <x<Hh o
a fuzzy rate matriQ defined on credibility space Ay (X)= X+ —2h Ji=] (19
(©,9(©),Cr) with credibility distribution function 2(c -85 b <x<g
matrix A= (A, )NxN. Then by a direct application of 1 x> G

Theorem 4 item (3), a random fuzzy continuous-

time Markov chain can be obtained. The holding times, denoted bly, i =0,1,-- N — 1,

Definition @ A process is called as random fuzzy are independent random fuzzy exponential variable
continuous-time Markov chaia:{g[,tzo} taking  with fuzzy parameter g :quj following a

values in se§ ={0,1,2;-- N— %, if piecewise linear credibility distribution

(a) £ ={¢,.t >0} satisfies Markov property:

0 X< g
Prle, = | Ig, =i, &, =i, £, =i} ) % 3 <x<b
=Prit =116 =1} =1, az , (20)
Hq—_b h S X< q
forall t, <t,<---<s<t and anyi,,i i,jesS 2 —h)
1 2 L B . 1 XZq
(b) the stochastic semigrouP={Rt> G is
standard; where
(c) if the fuzzy rate matrix
N-1
P a = g
Q=(a)y. = = (18) J=Li=
t N-1
h=)_ 1R (21)
is defined on credibility spac(a@,q3(@),Cr) with j=Lj=
N-1
credibility distribution function matrix\ = (Aij )NxN : C = G
j=1,j=

It is obvious that irDefinition 9for a given value of
matrixQ=Q,, ¢={¢,t>0} is a probabilistic

continuous-time Markov chairHowever, ifQ is a
fuzzy matrix, then for any given time, the count
¢€,is a random fuzzy variable accordingTheorem
5. Therefore, Definition 9 defines a stationary

random fuzzy Poisson process.
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! Table 1 Range analysis farr
v, (t)= [ Cr{0:q (0) >~ In(1-a)/t} th
0

(22) X «_and credibility measure expression
— 1+ et e + e — e” —oco<X<a| Range for(x 0<a<l-e™
2(h—a)t  2(h—¢)t crA(0)>-in(1-a)f |1
a<x<b | Range forcy l-e*<a<l-e”
Proof: Note that Cr{A0)z-In(1-a)/t} | 1-(x-a)/(2(b-3)
b<x<c | Range forx l-e"<a<l-e*
P{T(q)<§=1-¢% (23) cr{A(#)> (L a)t) | (c-x/2(c-b
d < x< +o0| Range for(x 1-e"<a<l
Cr{x(6)>-In(1-a)/t} |0

Therefore event{@:Pr{T(q(&))gt}Za} is a
fuzzy event and is equivalent to the fuzzy eventThen the exponential random fuzzy lifetime has an
{9 :q (9) > In (1_a)/t} . As a critical toward the average chance distribution function:

derivation of the average chance distribution,sit i
necessary to calculate the credibility measure for

fuzzy event{@ 1q (0)>—1In (1—a)/t} . i.e., obtain

the expression for et _ gt gd_
— +

2b—ayt  2(d-

xp(t):]‘Cr{e A (0)>—In(1-a)/t} d

ct

t

QO | D

Cr{0:q(0)>—In(1-a)/t} (24)
and the average chance density is

Recall that for the credibilistic fuzzy

. o . e e—at _ e—bt be—bt_ aéat
variable g iji g, the credibility measure ¢(t):2<b—a)t2 = T
takes the form A (26)
+Ze(d_§)t2 " Cg(d_ S)et
1 X< g
b -3 —x
2(b—3g) a<x<h This concludes the proof.
Cr{:q (0)> x} = ey . (25 Similar to the probabilistic reliability theory, we
2 : b <x<g define a reliability function or survival functidor a
(¢ -h) random fuzzy lifetime and accordingly name it as th
0 X=>G average chance reliability function, which is defin

accordingly as

Accordingly, the range for integration witlacan be
determined as shown iflable 1 Recall that the \T;(t)zl_\l;(t) (27)

expression of x=—In(1—a)/t appears in

Equation (25), which facilitates the link between

intermediate variable @ and average chance Then, for exponential random fuzzy lifetime, its

average chance reliability function is

measure.
The average chance distribution for the exponédntial

distributed random fuzzy lifetime is then derived b _ gl _ght got_ gt

splitting the integration into five terms accorditog U(t)= + (28)
the range ofr and the corresponding mathematical 2<b_ a)t Z(d_ C) t

expression for the credibility measure

Cr{6:q(0)>—In(1-a)/t}, which is detailed in  Remark 1 The average chance distributions of jump
the followingTable 1 probabilities qij/qj do not have closed forms, which

require the application of Zadeh's [25] extension
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theorem. However, the values of fuzzy probability (c) The parameters of rate functions, i.e., theient

g;/q fallinintervals of the fuzzy rate matrix Q(t)=(q, (), are
credibilistic fuzzy variables defined on the common
credibility measure spad®,$(©),Cr).

(29) Theorem 5If the process, = {¢,,t > 0} is currently

ma s f
FEIDI i | e
holds at statei, it holds in statei during an
exponentially distributed time with fuzzy parameter

which will help the explorations on the process q (t) , independently of how the process reached
QZ{it,t 20}- statei and how long it gets there. Furthermore, The
processg ={¢,,t >0} leaves staté, and moves to

g G
j=i aij ija CTJ

min

5. Non-stationary random fuzzy continuous-

time Markov chain state j with a fuzzy probabilityg, (t)/q (t) (i=1]).

. . Corollary 3 The probability distribution of holding
The prObabi“StiC non—Sta'[ionarﬂOI’]tlnUOUS-tIme times given the current Sta{g4 — Xi—l c S ,
Markov chainis an extension to the stationary one B
except the rate matrix is function of time, i.emd-
dependent. Therefore, aon-stationary random PF{W—W_1> tE, = X_l}z
fuzzy continuous-time Markov chairman be
defined as follows. exp(—(m w, + t)>— m . (w,+ I))

Definition 1Q A process is called as random fuzzy
continuous-time  non-stationary Markov  chain

g:{gt,tzo} taking values in state space

S={01,2;- N-1,if m(t):fq(u) du (35)
(a) £ ={¢,,t >0} satisfies Markov property: 0

(34)

where

is called thei™integrated rate function.
pr{gK =jlE, =i & =i, £ :i} Example 2Assume a linear rate function:
o (30)
=Prig =g, =i}
G ()=8; +Byt (j=i),Bg >0,8;, >C (36)
forall t, <t,<---<s<t and anyi,i,,--i, €S.

Further, we assume tha, and {3, both have

b) for vs<t, p(st)=Pr{g =jls, =i}, the . Do
(b) 5= P (8§ =Pri = It =) piecewise linear credibility distribution:

transitional probabilities satisfy
(i) for a small time-incremenh, ¢={¢ t>0}

0 x< g
moves from statei to state j with (fuzzy) x—g¥
HH . 71 a1[k) S X< q@
probability: 2(q}k> , a}tk)) j
A =1 o , k=0,1 (37)
. X+Qj — 3 K
p (tt+h)=q () h+ o h O = ) (31) W b < x< ¢
1 x> g

(i) for a small time-incremenh, ¢={¢,,t>0}
remaining in staté with (fuzzy) probability Then the diagonal entries; (), i=0,1,-- N — 1,
have credibility distributions

p(tt+h)=1-q(t)h+ o H h O (32)
0 X<
where rate functions X—a <x<b
- A (x)= fihq_—az)p " L i=0L N—1 (38)
()= > g (1) i=01 N1 (33) 2c—p) 25X<¢
o 1 X>G
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where {e Pr{T,(0)<t}> oc}
a Nl(q] . ﬁ} ) :{e 1—ex —](BOJrBlu)du Zal
ISCETE @)  —{01-e"zef
0 ={6:m(t)>—In(1- )}
= :O(qJ +¢"1

Therefore, the average chance distributionTigrthe
first holding at staté is

(1)

The integrated diagonal entries Qft):

S

m <t) = Bo;‘ t+ Bli t (40)

9 Pr{T <t}20c) do
will have a credibility distributions:

r(0:m(t)>—In(1— o)) dov

Je
Je

0 y<A
y—A
<y<
2(B —A) A=y<H It is noticed thaty = —In(1—«), therefore,
A (t)(y): (41)
" y+G—28
B<y<G
2(C,— B) 1 y<A
LoovES B2V pcy<s
2B-4A) 7
Cr{m(t)> y}= -
Where G-y B<y<G
2Cc-8) 7
N-1
A= (a] t+q<1)12) 0 y=G
j=0
N-1
B :Z< t+l;f tZ) (42) Hence,
j=0
C:Nl( t+q}( ) \I/T‘(t)_
=0 ma) 2B AL i g
1—e ™A 4 3 ] (e —e"?)
In general, the credibility distribution of the 1 —m(B) (A
. . . . o +——|—-Mm e + A e’
integrated intensity functlcm(t), it iIs necessary to 2(B — A)( <B) mj A§ )
apply Zadeh'’s [25] extgnsior_1 prin_ciple, deno_te_q as N C -1 (e’m(a)— e’”“;))
Ay, but for the piecewise linear credibility 2(C,—B)
distribution case, the mathematical arguments are 1 _mG) _(B)
relatively simple. +2(C——I3)(_m(Q)e +n B e )

Now let us derive the average chance distribution f

. . . . h - .-y .
the first holding times ait" state (the initial state). 4. A parameter estimation scheme

! The parameter estimation is in nature an estimation
v, (t):fcr(e1Pr{'ﬂ(9)§t}2&)d& problem of credibility distribution from fuzzy
0 observations. Guo and Guo [10] recently proposed a
_ o maximally compatible random variable to a
Note that for the first arrival time, credibilistic fuzzy variable and thus the fuzzy

estimation problem is converted into estimating the
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distribution function of the maximally compatible
random variable. The following scheme is for
estimating the piecewise linear credibility
distribution.

Definition 1 Let X be a random variable defined

in (R,%(R)) such that

,UC=C|'0§(71=,U: Po X! (43)

Then X is called a maximally compatible to fuzzy
variableé .

In other words, random variabkecan take all the
possible real-values the fuzzy variabfemay take

with and the distribution ofX , F,(r) equals the
credibility distribution of¢,, A (r) forall r OR.

It is aware that the induced measute Croé™ and
measurg/.=Po X' are defined on the same
measurable spad@®,B(R)). Furthermore, we notice
that the pre-imagé™ (B) OB (®) , but, the pre-image
X7 (B)O2A(©) 0 P(©), which implies that for the
same Borel setBOB(R), the pre-images under

fuzzy variable ¢ and random variable are not the
same. It is expected that

{peo:x(p)<rjcfoco:g(0)<r}
but

Pr{oco:x(0)<r}=croco «(0)<r}

(45)

Step 4: Identify x, ~from {x(l),x(z),---,)%n)} such
that x, | < b < X, and1<i, <i;, then we may see

{X(l)ﬂiz)""’)iio)} as a set of order statistics from

uniform [a,b]. Hence the *“sufficient” statistic for
parametetb is X; , .

Then (5’676)=(>f1)’>60)7>&)) is the parameter

estimator for the piecewise linear credibility
distribution.
0 x<a
xA—a a<x<b
L
A(x)= o (46)
X+C-2b - -
— b<x<ct¢
2(¢-b)
1 X=C

The next issue is how to extract the information on
matrix rate Q in stationary random fuzzy the
continuous-time Markov chain. Basawa and Rao [1]
developed maximum likehood procedure for
estimating the entrieg, inQ. Interested readers may
check Chapter 5 and 8 of [1].

It is noticed that for a given random fuzzy
continuous-time Markov chaif = {¢,,t >t}, if we

fix the fuzzy rate matrix at a given valug, then

The statistical estimation scheme for parameter%:{g“tzt} becomes a probabilistic continuous
(a,b,c) of the credibility distribution based on fuzzy Markov chain, Form the sample of the process:

observationg x, x,,--, %} can be stated as:
Estimation Scheme 1
Step 1: Rank fuzzy observation§x,x,, -, x} to

obtain “order” statistics {&1)’)?2)""’)%)} in

ascending order;
Step 2: Seta=x, andC=x,;

Step 3: Set a tentative estimator fb,

b =25 % " K

> (44)

where

130

K= (N X (W X+, We X W)
which is sufficient. Then an MLE estimator faq, ,
denoted asQ, is obtained. Repeat the sampling

procedure from the random fuzzy continuous-time
Markov chain as many times as possible, say,
times, then the fuzzy rate matrix “observation”
sequence is

{61-622 " 'Qn} (47)
Apply the Estimation Scheme 1o the estimated
observations (i,j)" entry of rate matrix Q
{q(jl),q@ e qm)} , the
credibility distribution shown in Equation (54) for
qij .

then piecewise linear
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For the non-stationary random fuzzy continuous-timeg, Conclusion
Markov chain, the parameters specifying the rate

matrix Q(t;@’ may use maximum likelihood In this paper, we give a systematic treatment of

o o random fuzzy continuous-time Markov chains not
estimation procedure for estimating the parametergnly from the stationary one and then non-statipnar
for defining fuzzy parameter8. Therefore the idea one, but also a parameter estimation scheme as well

is similar to that of stationary case but the doéity ~ a@s a simulation scheme is proposed. In this way, th
distribution treatments involved may be very foundation for the random fuzzy continuous-time
complicated since Zadeh's extension principle [25]Markov chains is formed although in its early stage
must be applied. mean measure involves two lineaf he applications to reliability engineering fieldad
piecewise credibility distributions for fuzzy the risk analysis now can extend from random
parameters, and s, respectively. uncertainty only cases to randomness and fuzziness
co-existence cases. It is expecting that this
development will help the reliability and risk
analysis researchers as well as reliability anslgat
Simulation of a random fuzzy continuous-time engineers.

Markov chain is intrinsically two-stage proceduse:

fuzzy parameter simulation for generating References

realizations {(q"),(¢”).--(¢")} from an matrix of

5. A simulation scheme
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