PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the Effect of a Covalently Bonded PGN Based Reactive Plasticizer on the Thermal Decomposition Behaviour of Glycidyl Azide Polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plasticizers are one of the additives that are added to polymers to increase the plasticity or decrease the viscosity of the material. Here, we have synthesized and characterized a new PGN-based reactive energetic plasticizer that has an oligomeric structure. The reactive energetic plasticizer can be grafted onto glycidyl azide polymer via a Cu-free Huisgen azide-alkyne 1,3-dipolar cycloaddition. The effect of the covalently bonded PGN-based plasticizer on the thermal properties of GAP-g-PGN copolymer has been investigated through thermogravimetric analysis and differential scanning calorimetry. The results indicate that the glass transition temperature of the prepolymer is decreased from –47.8 to –50.7 °C. Also, the kinetics of the thermal behaviour of GAP-g-PGN copolymer was determined by the application of the Kissinger and FWO kinetic models. The activation energies calculated by the Kissinger method were 165 and 188 kJ/mol for peak 1 and peak 2, respectively. Furthermore, the critical temperature (Tb) of thermal explosion for this energetic copolymer was estimated to be 182 °C.
Rocznik
Strony
259--280
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Chemistry and Chemical Engineering Faculty of Material and Chemical Engineering, Malek-Ashtar University of Technology, PO Box: 16765-3454, Lavizan, Tehran, Iran
  • Department of Chemistry and Chemical Engineering Faculty of Material and Chemical Engineering, Malek-Ashtar University of Technology, PO Box: 16765-3454, Lavizan, Tehran, Iran
Bibliografia
  • [1] Kohga, M. From Cross-linking to Plasticization – Characterization of Glycerin/HTPB Blends. Propellants Explos. Pyrotech. 2009, 34(5): 436-443.
  • [2] Shankwalkar, S.G.; Cruz, C. Thermal Degradation and Weight Loss Characteristics of Commercial Phosphate Esters. Ind. Eng. Chem. Res. 1994, 33(3): 740-743.
  • [3] Gowariker, V.R.; Viswanathan, N.V.; Sreedhar, J. Polymer Science. 2nd ed., New Age International 2015; ISBN 0470203226.
  • [4] Frankel, E.N.; Pryde, E.H. Acetoxymethyl Derivatives of Polyunsaturated Fatty Triglycerides as Primary Plasticizers for Polyvinylchloride. Patent US 4083816A, 1978.
  • [5] Wypych, G. Handbook of plasticizers. 3rd ed., ChemTec Publishing, Elsevier 2017: P.27; ISBN 9781895198973.
  • [6] Bohn, M.A. Determination of the Kinetic Data of the Thermal Decomposition of Energetic Plasticizers and Binders by Adiabatic Self-heating. Thermochim. Acta 1999, 337(1-2): 121-139.
  • [7] Kumari, D.; Balakshe, R.; Banerjee, S.; Singh, H. Energetic Plasticizers for Gun and Rocket Propellants. Rev. J. Chem. 2012, 2(3): 240-262.
  • [8] Chen, Y.; Kwon, Y.; Kim, J.S. Synthesis and Characterization of bis(2,2-Diisopropylethylene) Formal Plasticizer for Energetic Binders. J. Ind. Eng. Chem. 2012, 18(3): 1069-1075.
  • [9] Provatas, A. Energetic Plasticizer Migration Studies. Energ. Mater. 2003, 21(4): 237-245.
  • [10] Marcilla, A.; García, S.; Garcia-Quesada, J. Migratability of PVC Plasticizers. Polym. Test 2008, 27(2): 221-233.
  • [11] Hakkarainen, M. Migration of Monomeric and Polymeric PVC Plasticizers. Adv. Polym. Sci. 2008, 211: 159-185.
  • [12] Zhou, Y.; Long, X.; Wei, X. Theoretical Study on the Diffusive Transport of 2,4,6-Trinitrotoluene in the Polymer-bonded Explosive. J. Mol. Model. 2011, 17: 3015-3019.
  • [13] Nair, U.; Asthana, S.; Rao, A.S.; Gandhe, B. Advances in High Energy Materials. Defence Sci. J. 2010, 60(2): 137-151.
  • [14] Yang, B.; Bai, Y.; Cao, Y. Effects of Inorganic Nano‐particles on Plasticizers Migration of Flexible PVC. J. Appl. Polym. Sci. 2010, 115(4): 2178-2182.
  • [15] Bodaghi, A.; Shahidzadeh, M. Synthesis and Characterization of New PGN Based Reactive Oligomeric Plasticizers for Glycidyl Azide Polymer. Propellants Explos. Pyrotech. 2018, 43: 364-370.
  • [16] Mohan, Y.M.; Raju, M.P.; Raju, K.M. Synthesis, Spectral and DSC Analysis of Glycidylazide Polymers Containing Different Initiating Diol Units. J. Appl. Polym. Sci. 2004, 93(5): 2157-2163.
  • [17] Liu, D.; Zheng, Y.; Steffen, W.; Wagner, M.; Butt, H.J.; Ikeda, T. Glycidyl 4-Functionalized-1,2,3-triazole Polymers. Macromol. Chem. Phys. 2013, 214(1): 56-61.
  • [18] Song, S.; Ko, Y.-G.; Lee, H.; Wi, D.; Ree, B.J.; Li, Y.; Michinobu, T.; Ree, M. High-Performance Triazole-containing Brush Polymers via Azide-Alkyne Click Chemistry: A New Functional Polymer Platform for Electrical Memory Devices. NPG Asia Mater. 2015, 7(e288): 228-240.
  • [19] Shee, S.K.; Reddy, S.T.; Athar, J.; Sikder, A.K.; Talawar, M.; Banerjeeb, S.; Khan, S. Probing Plasticizers: Thermal, Rheological, and DFT Studies, the Compatibility of Energetic Binder Poly Glycidyl Nitrate with Energetic Plasticizer. RSC Adv. 2015, 5(123): 101297-101308.
  • [20] Pant, C.S.; Wagh, R.M.; Nair, J.K.; Gore, G.M.; Venugopalan, S. Synthesis, and Characterization of Two Potential Energetic Azido Esters. Propellants Explos. Pyrotech. 2006, 31(6): 477-481.
  • [21] Kumari, D.; Anjitha, S.; Pant, C.S.; Patil, M.; Singh, H.; Banerjee, S. Synthetic Approach to Novel Azido Esters and Their Utility as Energetic Plasticizers. RSC Adv. 2014, 4(75): 39924-39933.
  • [22] Ang, H.G., Pisharath, S. Energetic Polymers. Wiley-VCH, Weinheim/Chichester, 2012; ISBN 9783527331550.
  • [23] Shaojun, Q.; Huiqing, F.; Chao, G.; Xiaodong, Z.; Xiaoxian, G. An Azido Ester Plasticizer 1,3‐Di(Azidoacetoxy)‐2,2‐Di(Azidomethyl) Propane (PEAA): Synthesis, Characterization and Thermal Properties. Propellants Explos. Pyrotech. 2006, 31(3): 205-208.
  • [24] Drees, D.; Löffel, D.; Messmer, A.; Schmid, K. Synthesis and Characterization of Azido Plasticizer. Propellants Explos. Pyrotech. 1999, 24(3): 159-162.
  • [25] Zhang, Z.; Wang, G.; Luo, N.; Huang, M.; Jin, M.; Luo, Y. Thermal Decomposition of Energetic Thermoplastic Elastomers of Poly(glycidyl nitrate). J. Appl. Polym. Sci. 2014, 131(21): 40961-40966.
  • [26] Hai, C. The Investigation of Thermal Decomposition Kinetics for PNIMMO by TG-MS. Initiators and Pyrotechnics. 2007, 2(4): 32-35.
  • [27] Mohan, Y.M.; Raju, K.M.; Sreedhar, B. Synthesis and Characterization of Glycidylazide Polymer with Enhanced Azide Content. Int. J. Polym. Mater. 2006, 55(6): 441-455.
  • [28] Lua, A.C.; Su, J. Isothermal and Non-isothermal Pyrolysis Kinetics of Kapton® Polyimide. Polym. Degrad. Stab. 2006, 91(1): 144-153.
  • [29] Sivalingam, G.; De, P.; Karthik, R.; Madras, G. Thermal Degradation Kinetics of Vinyl Polyperoxide Copolymers. Polym. Degrad. Stab. 2004, 84(1): 173-179.
  • [30] Morancho, J.; Salla, J.; Ramis, X.; Cadenato, A. Comparative Study of the Degradation Kinetics of Three Powder Thermoset Coatings. Thermochim. Acta 2004, 419(1): 181-187.
  • [31] Flynn, J.H.; Wall, L.A. A Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci. Pol. Lett. 1966, 4(5): 323-328.
  • [32] Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
  • [33] Chizari, M.; Bayat, Y. Synthesis and Kinetic Study of a PCL-GAP-PCL Tri-block Copolymer. Cent. Eur. J. Energ. Mater. 2018, 15(2): 243-257.
  • [34] Salla, J.; Morancho, J.; Cadenato, A.; Ramis, X. Non-isothermal Degradation of a Thermoset Powder Coating in Inert and Oxidant Atmospheres. J. Therm. Anal. Calorim. 2003, 72(2): 719-728.
  • [35] Li, L.; Guan, C.; Zhang, A.; Chen, D.; Qing, Z. Thermal Stabilities and the Thermal Degradation Kinetics of Polyimides. Polym. Degrad. Stab. 2004, 84(3): 369-373.
  • [36] Shekhar, P.C.; Santosh, M.S.; Banerjee, S.; Khanna, P.K. Single-Step Synthesis of Nitro‐Functionalized Hydroxyl‐Terminated Polybutadiene. Propellants Explos. Pyrotech. 2013, 38(6): 748-753.
  • [37] Rantuch, P.; Kačíková, D.; Nagypál, B. Investigation of Activation Energy of Polypropylene Composite Thermooxidation by Model-free Methods. Eur. J. Environ. Saf. Sci. 2014, 2(1): 12-18.
  • [38] Wang, H.; Tao, X.; Newton, E. Thermal Degradation Kinetics and Lifetime Prediction of a Luminescent Conducting Polymer. Polym. Int. 2004, 53(1): 20-26.
  • [39] Wan, C.; Tian, G.; Cui, N.; Zhang, Y.; Zhang, Y. Processing Thermal Stability and Degradation Kinetics of Poly(vinyl Chloride)/Montmorillonite Composites. J. Appl. Polym. Sci. 2004, 92(3): 1521-1526.
  • [40] Olszak-Humienik, M.; Mozejko, J. Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates. Thermochim. Acta 2000, 344(1-2): 73-79.
  • [41] Pickard, J.M. Critical Ignition Temperature. Thermochim. Acta 2002, 392-393: 37-40.
  • [42] Rodgers, R.N.; Janney, J.L.; Ebinger, M.H. Kinetic-isotope Effects in Thermal Explosions. Thermochim. Acta 1982, 59(3): 287-298.
  • [43] Zhang, T.L.; Hu, R.Z.; Xie, Y.; Li, F.P. The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials using Non-isothermal DSC. Thermochim. Acta 1994, 244: 171-176.
  • [44] Dong, J.; Ou, J.-Y.; Zhu, L.; Li, B. Thermal Decomposition Kinetic Study of Azidoterminated Glycidyl Azide Polymer. Chin. J. Energ. Mater. (Hanneng Cailiao) 2016, 24(6): 555-559.
  • [45] Sun, J.; Li, Y.; Hasegawa, K. A Study of Self-accelerating Decomposition Temperature (SADT) using Reaction Calorimetry. J. Loss Prevent. Proc. 2001, 14(5): 331-336.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08f0b4f9-b958-4784-a064-11da7a0e5b83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.