Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Optimization plays an important role in scientific and engineering research. This paper presents the effects of using the catenoidal shape to design the structure of a chimney cooling tower. The paper compares some geometrical variations of the catenoid with the reference existing hyperboloidal structure. It also compares internal forces, deformation and stability of the catenoidal structure. The comparison shows some predominance of the catenoid over the popular hyperboloid structure of the shell. The paper attempts to find an optimal shape of the cooling tower in order to reduce the amount of material and labor. The paper utilizes engineering tools and the designing process for chimney cooling towers.
Rocznik
Tom
Strony
art. no. e147341
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
autor
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
autor
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
- [1] G.B. Hill, E.J. Pring, and P.D. Osborn, Cooling Towers. Principles and Practice, London, Boston, Singapore, Sydney, Toronto, Wellington, Butterworth-Heinemann, 1990.
- [2] J. Ledwoń and M. Golczyk, Chłodnie Kominowe i Wentylatorowe, Warsaw, Arkady, 1967. (in Polish)
- [3] F. Afshari and H. Dehghanpour, “A Review Study On Cooling Towers; Types, Performance and Application,” ALKÜ Fen Bilimleri Dergisi, pp. 1–10, Mar. 2019
- [4] S. Bielak and R. Walentyński, “Powłoka katenoidalna – opis geometryczny, rozwiązanie ogólne umownego stanu błonowego i przykład dla osiowo-symetrycznego obciążenia ciężarem własnym,” Zesz. Nauk. WSI, vol. 36, pp. 39–52, 1993. (in Polish)
- [5] C. Kostem, “The determination of the shape and thickness of a thin minimum weight shell,” Ph.D. dissertation, University of Arizona, 1966.
- [6] Eurocode Basis of Structural Design, EN-1990, CEN, 2002.
- [7] Eurocode 1: Actions on structures – Part 1-1: General actions – Densities, self-weight, imposed loads for buildings, EN-1991-1-1, CEN, 2002.
- [8] Eurocode 1: Actions on structures – Part 1-4: General actions - Wind actions, EN-1991-1-4, CEN, 2005.
- [9] Eurocode 2: Design of concrete structures – Part 1-1 : General rules and rules for buildings, EN-1992-1-1, CEN, 2004.
- [10] Structural Design of Cooling Towers, VGB-S610-00-2019-10-EN, VGB, 2019.
- [11] G. Rakowski and Z. Kacprzyk, Metoda Elementów Skończonych w mechanice konstrukcji, Warsaw, Oficyna Wydawcza Politechniki Warszawskiej, 2005. (in Polish)
- [12] von T. Kármán, Aerodynamics – Selected Topics in the Light of Their Historical Development, Dover Publications, 1957.
- [13] S. Ke et al., “Sensitivity analysis and estimation method of natural frequency for large cooling tower based on field measurement,” Thin-Walled Struct., vol. 127, pp. 809–821, 2018, doi: 10.1016/j.tws.2018.03.012.
- [14] A. Flaga, Inżynieria Wiatrowa. Podstawy i Zastosowania, Warsaw, Arkady, 2008
- [15] A. Padewska, “Determination of the interference coefficients of cylinders in rows arrangement,” in Współczesny stan wiedzy w inżynierii lądowej, vol. 1, I. Pokorska-Silvan Ed., Gliwice, 2015. (in Polish)
- [16] R. Walentyński, M. Wiśniowski, and D. Cornik, “Catenoid cooling tower – introductory structural; analysis” in Lightweight Structures in Civil Engineering, 2022, pp. 129–140.
- [17] G. Pankanin, “Numerical Analysis of Flow Averaging Tubes in The Vortex-Shedding Regime,” Metrol. Meas. Syst., vol. 18, pp. 361–370, 2011.
- [18] D. Cornik, “Porównanie charakterystyk dynamicznych chłodni kominowych hiperboloidalnej i katenoidalnej,” M.S. thesis, Silesian Univeristy of Technology, Gliwice, 2020. (in Polish)
- [19] Concrete, reinforced concrete and prestressed concrete. Design rules, PN-84/B-03264, PKN, 1984.
- [20] M. Huihan, L. Zongyu, L. Shaozhen, S. Bingbing, and F. Feng, “Stability analysis and performance comparison of large-scale hyperbolic steel cooling towers with different latticed shell systems,” J. Constr. Steel. Res., vol 160, pp. 559–578, 2018, doi: 10.1016/j.jcsr.2019.05.042.
- [21] A. Flaga, R. Kłaput, Ł. Flaga, and P. Krajewski, “Wind tunnel model tests of wind action on the chimney with grid-type curtain structure,” Archives of Civil Engineering, vol. 67, pp 177-196, 2021, doi: 10.24425/ace.2021.138050.
- [22] M. Kabaciński, C. Lachowicz, and J. Pospolita, “Numerical Analysis of Flow Averaging Tubes in The Vortex-Shedding Regime,” Arch. Mech. Eng., vol. 60, pp. 283297, 2013, doi: 10.2478/meceng-2013-0018.
- [23] K. Gromysz, Dynamika Budowli. Obliczanie układów prętowych o masach skupionych, Warsaw, PWN, 2017. (in Polish)
- [24] S. Ke et al., “Full-scale measurements and damping ratio properties of cooling towers with typical heights and configurations,” Thin-Walled Struct., vol. 124, pp. 437–448, 2018, doi: 10.1016/j.tws.2017.12.024.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08ed8ffa-73dc-4f81-8ad4-af2129a92966