Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In automatic and accurate reading recognition of analog meters based on machine vision, one of important issues is the detection of pointer features, which includes the meter center and pointer image processing. The current automatic-recognition approaches to reading analog meters often consist in locating the meter center based on the dial region or its border. The located center is not coincident with the rotation center of pointer which leads to inevitable reading errors. In the paper, the centripetalism of annular scale lines is used to calculate the position of the pointer rotation center. First, it uses the region growing method to locate the dial region and uses the eccentricity measure to extract annular scale lines. Second, the parameters of these scale lines are estimated with the Hough transform method. Then, the common intersection of a group of lines, i.e., the meter rotation center, is determined with the maximum probability criterion. Finally, the pointer centerline and direction are detected through the calculated center and the Hough transform results. The simulated and experimental results demonstrate that the proposed method can accurately locate the pointer rotation center and obtain pointer centerline. Moreover, it is applicable to the meter image captured under a slant camera view or with uneven light illumination.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
589--599
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wzory
Twórcy
autor
- Inner Mongolia University of Technology, College of Mechanical Engineering, Huhhot 010051, China
autor
- Inner Mongolia University of Technology, College of Mechanical Engineering, Huhhot 010051, China
- Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Huhhot 010051, China
autor
- Inner Mongolia University of Technology, College of Mechanical Engineering, Huhhot 010051, China
- Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Huhhot 010051, China
Bibliografia
- [1] Alegria, E. C., & Serra, A. C. (2000). Automatic calibration of analog and digital measuring instruments using computer vision. IEEE Transactions on Instrumentation and Measurement, 49(1), 94-99. https://doi.org/10.1109/19.83631710.1109/19.836317.
- [2] Zheng, C., Wang, S., Zhang, Y., Zhang, P., & Zhao, Y. (2016). A robust and automatic recognition system of analog instruments in power system by using computer vision. Measurement, 92, 413-420. https://doi.org/10.1016/j.measurement.2016.06.045
- [3] Galliana, F., & Lanzillotti, M. (2019). Evaluation of a high-precision digital multimeter by the laboratory of calibration of multifunction electrical instruments of INRIM. Metrology and Measurement Systems, 26(2). 283-296. https://doi.org/10.24425/mms.2019.128356
- [4] Hemming, B., Fagerlund, A., & Lassila, A. (2007). High-accuracy automatic machine vision based calibration of micrometers. Measurement Science and Technology, 18(5), 1655-1660. https://doi.org/10.1088/0957-0233/18/5/058
- [5] Gao, J. W., Xie, H. T., Zuo, L., & Zhang, C. H. (2017). A robust pointer meter reading recognition method for substation inspection robot. 2017 International Conference on Robotics and Automation Sciences (ICRAS), China, 43-47. https://doi.org/10.1109/ICRAS.2017.8071914
- [6] Yifan, M., Qi, J., Junjie, W., & Guohui, T. (2017, October). An automatic reading method of pointer instruments. 2017 Chinese Automation Congress (CAC), China, 1448-1453. https://doi.org/10.1109/CAC.2017.8242995
- [7] Belan, P. A., Araujo, S. A., & Librantz, A. F. H. (2013). Segmentation-free approaches of computer vision for automatic calibration of digital and analog instruments. Measurement, 46(1), 177-184. https://doi.org/10.1016/j.measurement.2012.06.005
- [8] Yang, Z., Niu, W., Peng, X., Gao, Y., Qiao, Y., & Dai, Y. (2014, April). An image-based intelligent system for pointer instrument reading. 2014 4th IEEE International Conference on Information Science and Technology, China, 780-783. https://doi.org/10.1109/ICIST.2014.6920593
- [9] Song, W., Zhang, W. J., Zhang, J., Wang, Y., Zhou, Q., & Shi, W. (2014). Meter reading recognition method via the pointer region feature. Chinese Journal of Scientific Instrument, S2, 50-58. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YQXB2014S2008.htm
- [10] Zhang, W. J., Xiong, Q. Y., Zhang, J. Q., Wang, Y., Jiang, P., & Wang, C. (2015). Pointer type meter reading recognition based on visual saliency. Journal of Computer-Aided Design & Computer Graphics, 27(12), 2282-2295. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JSJF201512006.htm
- [11] Chi, J., Liu, L., Liu, J., Jiang, Z., & Zhang, G. (2015). Machine vision based automatic detection method of indicating values of a pointer gauge. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/283629
- [12] Ma, Y., & Jiang, Q. (2018). A robust and high-precision automatic reading algorithm of pointer meters based on machine vision. Measurement Science and Technology, 30(1), 015401. https://doi.org/10.1088/1361-6501/aaed0a
- [13] Hengqiang, S., & Changji, W. (2012). A new algorithm based on super-green features for ostu’s method using image segmentation. World Automation Congress 2012, Mexico. https://ieeexplore.ieee.org/document/6321876
- [14] Heyduk, A. (2019). Elliptical shape and size approximation of a particle contour. Proceedings of IOP Conference Series: Earth and Environmental Science, Poland, 261(1). https://doi.org/10.1088/1755-1315/261/1/012013
- [15] Yam-Uicab, R., López-Martínez, J., Llanes-Castro, E., Narvaez-Díaz, L., & Trejo-Sánchez, J. (2018). A parallel algorithm for the counting of ellipses present in conglomerates using GPU. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/5714638
- [16] Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A., & Saad, F. S. A. (2018). Performance analysis of image thresholding: Otsu technique. Measurement, 114, 298-307. https://doi.org/10.1016/j.measurement.2017.09.052
- [17] Xu, Z., Shin, B. S., & Klette, R. (2015). Closed form line-segment extraction using the Hough transform. Pattern Recognition, 48(12), 4012-4023. https://doi.org/10.1016/j.patcog.2015.06.008
- [18] Li, D., Chen, H., Sheng, Y., & Yang, L. (2019). Dual-station intelligent welding robot system based on CCD. Measurement Science and Technology, 30(4), 045401. https://doi.org/10.1088/1361-6501/ab02d7
- [19] Fatan, M., Daliri, M. R., & Shahri, A. M. (2016). Underwater cable detection in the images using edge classification based on texture information. Measurement, 91, 309-317. https://doi.org/10.1016/j.measurement.2016.05.030
Uwagi
1. This work was supported by the National Natural Science Foundation of China (51765054), the Natural Science Foundation of Inner Mongolia of China (2020LH06002) and the Science Foundation of the Inner Mongolia University of Technology of China (X201703 and ZZ201902).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08ebc58d-4b41-4bb5-b9ec-abca4f418221
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.