PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase change heat exchangers made of pin-fins for boiling enhancement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the important issue of boiling heat transfer enhancement using mechanical treatment of the heater surface. The surface has been modified in such a way that microfins have been produced. The application of such a structure leads to highly increased heat fluxes in relation to the smooth surface as has been presented and discussed in the paper. The experiments including distilled water and ethyl alcohol on the horizontal copper samples of 3 cm diameter have been considered. The heat flux value of microfinned surface was even nine times higher than the heat flux dissipated from the smooth surface without any coating. It proves a considerable enhancement of boiling with the application of the mechanically treated surfaces of heat exchangers.
Wydawca
Rocznik
Strony
433--439
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
  • Krakow University of Technology, Poland
  • Kielce University of Technology, Poland
Bibliografia
  • 1.Bara, M., Kmita, T., Korzekwa, J., 2016. Microstructure and properties of composite coatings obtained on aluminium alloys. Arch. Metall. Mater., 61, 1107-1112. DOI: 10.1515/amm-2016-0238
  • 2.Čaja, A., Nemec, P., Malcho, M., 2014. Influence of the ambient temperature during heat pipe manufacturing on its function and heat transport ability, EPJ Web of Conferences, 67, art. 02012, DOI: 10.1051/epjconf/20146702012.
  • 3.Domagala, M., Momeni, H., Domagala-Fabis, J., Filo, G., Krawczyk, M., 2018a. Simulation of Cavitation Erosion in a Hydraulic Valve. Materials Research Proceedings, 5, 1-6. DOI: 10.21741/9781945291814-1
  • 4.Domagala, M., Momeni, H., Domagala-Fabis, J., Filo, G., Kwiatkowski, D., 2018b. Simulation of Particle Erosion in a Hydraulic Valve. Materials Research Proceedings, 5, 17-24. DOI: 10.21741/9781945291814-4
  • 5.Dwornicka, R., 2014. The Impact of the Power Plant Unit Start-Up Scheme on the Pollution Load. Advanced Materials Research, 874, 63-69. DOI: 10.4028/www.scientific.net/AMR.874.63
  • 6.Fabis-Domagala, J., Filo, G., Momeni, H., Domagala, M., 2018. Instruments of identification of hydraulic components potential failures. MATEC Web Conf., 183, art. 03008. DOI: 10.1051/matecconf/201818303008
  • 7.Filo, G., Fabis-Domagala, J., Domagala, M., Lisowski, E., Momeni, H., 2018a. The idea of fuzzy logic usage in a sheet-based FMEA analysis of mechanical systems. MATEC Web Conf., 183, art. 03009. DOI: 10.1051/matecconf/201818303009
  • 8.Filo, G., Lisowski, E., Domagala, M., Fabis-Domagala, J., Momeni, H., 2018b. Modelling of pressure pulse generator with the use of a flow control valve and a fuzzy logic controller. AIP Conf. Proc., 2029, art. 020015. DOI: 10.1063/1.5066477
  • 9.Gadek-Moszczak, A., Radek, N., Wronski, S., Tarasiuk, J., 2014. Application the 3D image analysis techniques for assessment the quality of material surface layer before and after laser treatment. Adv. Mat. Res. Switz., 874, 133-138. DOI: 10.4028/www.scientific.net/AMR.874.133
  • 10.Gadek-Moszczak, A., Wojnar, L. 2009. Objective, quantitative and automatic x-ray image analysis of the bone regenerate in the ilizarov method. ECS10: The 10th European Congress of Stereology and Image Analysis, Milan, Int. Society for Stereology, 453-458.
  • 11.Gawlik, J., Kielbus, A., Karpisz, D., 2015. Application of an integrated database system for processing difficult material. Solid State Phenomena, 223, 35-45. DOI: 10.4028/www.scientific.net/SSP.223.35
  • 12.Hosseini, R., Gholaminejad, A., Jahandar, H., 2011. Roughness effects on nucleate pool boiling of R-113 on horizontal circular copper surfaces, World Academy of Science, Engineering and Technology, 55, 679-684. DOI: 10.5281/zenodo.1078068
  • 13.Karpisz, D., Kielbus, A., 2018. Selected problems of designing modern industrial databases. MATEC Web Conf., 183, art. 01017. DOI: 10.1051/matecconf/201818301017
  • 14.Kmita, T., Bara, M., 2012. Surface oxide layers with an increased carbon content for applications in oil-less tribological systems. Chemical and Process EngineeringInzynieria Chemiczna i Procesowa, 33, 479-486. DOI: 10.2478/v10176-012-0040-z
  • 15.Kozien, E., Kozien, M.S., 2017. Academic governance as a determinant of efficient management of a university in Poland - legal and comparative perspective. ESD 2017: Economic and Social Development Conf., Madrid, Varazdin, 38-47.
  • 16.Krawczyk, J., Sobczyk, A., 2018. Tests of New Methods of Manufacturing Elements for Water Hydraulics. Materials Research Proceedings, 5, 200-205. DOI: 10.21741/9781945291814-35
  • 17.Lipinski, T., 2015. Double modification of AlSi9Mg alloy with boron, titanium and strontium. Arch. Metall. Mater., 60, 2415-2419. DOI: 10.1515/amm-2015-0394
  • 18.Maciejewska, B., Piasecka, M., 2017. Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel, International Journal of Heat and Mass Transfer, 107, 925-933, DOI: 10.1016/j.ijheatmasstransfer.2016.11.003.
  • 19.Maciejewska, B., Piasecka, M., 2017. An application of the non-continuous Trefftz method to the determination of heat transfer coefficient for flow boiling in a minichannel, Heat and Mass Transfer, 53(4), 1211-1224, DOI: 10.1007/s00231-016- 1895-1.
  • 20.Nemec, P., Caja, A., Lenhard, R., 2009. Analysis of heat transfer limitation of wick heat pipe, Int. Conf. Experimental Fluid Mechanics 2009, Liberec, Czech Republic, 229- 234.
  • 21.Nemec, P., Malcho, M., Kaduchova, K., 2017. Experimental measurement, calculation and thermal visualization condenser temperature of cooling device with a heat pipe technology, EPJ Web of Conferences, 143, DOI: 10.1051/epjconf/201714302078.
  • 22.Nishikawa K., Fujita Y., Ohta H., Hidaka S., 1982. Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure, International Heat Transfer Conference, Munchen, Germany, 4, PB10, 61-66.
  • 23.Opydo, M., Kobylecki, R., Dudek, A., Bis, Z. 2016. The effect of biomass co-combustion in a CFB boiler on solids accumulation on surfaces of P91 steel tube samples. Biomass & Bioenergy, 85, 61-68. DOI: 10.1016/j.biombioe.2015.12.011
  • 24.Orman, Ł.J., 2013. Boiling heat transfer on single phosphor bronze and copper mesh microstructures, Int. Conf. Experimental Fluid Mechanics 2013, Kutná Hora, Czech Republic, 519-522. DOI: 10.1051/epjconf/20146702087
  • 25.Orman, Ł. J., 2016. Enhancement of pool boiling heat transfer with pin-fin microstructures, Journal of Enhanced Heat Transfer, 23, 137-153, DOI: 10.1615/JEnhHeatTransf.2017019452.
  • 26.Passos, J. C., Reinaldo, R.F., 2000, Analysis of pool boiling within smooth and grooved tubes, Experimental Thermal and Fluid Science, 22, 35-44, DOI: 10.1016/S0894- 1777(00)00008-X.
  • 27.Pastuszko, R., 2018. Pool boiling heat transfer on micro-fins with wire mesh Experiments and heat flux prediction, International Journal of Thermal Sciences, 125, 197-209, DOI: 10.1016/j.ijthermalsci.2017.11.019.
  • 28.Pastuszko, R., 2010. Pool boiling on micro-fin array with mesh structures, International Journal of Thermal Sciences, 49, 2289–2298, DOI: 10.1016/j.ijthermalsci.2010.07.016.
  • 29.Pastuszko, R., Wójcik, T. M., 2015. Experimental investigations and a simplified model for pool boiling on micro-fins with sintered perforated foil, Experimental Thermal and Fluid Science, 63, 34-44, DOI: 10.1016/j.expthermflusci.2015.01.002.
  • 30.Ribatski, G., Saiz Jabardo, J. M., 2003. Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces, International Journal of Heat and Mass Transfer, 46(23), 4439-4451, DOI: 10.1016/S0017-9310(03)00252-7.
  • 31.Skrzypczak-Pietraszek, E., Reiss, K., Zmudzki, P., Pietraszek, J., 2018. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS ONE 2018, 13, art. e0202556. DOI: 10.1371/journal.pone.020255610.1371/journal.pone.0202556 Strąk,
  • 32.K., Piasecka, M., Maciejewska, B., 2018. Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels, International Journal of Heat and Mass Transfer, 117, 375-387, DOI: 10.1016/j.ijheatmasstransfer.2017.10.019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08e58ba3-1074-4f3c-aea1-2874bb8d90e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.