PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane optyczne zjawiska nieliniowe w mikrostrukturach fotonicznych i ośrodkach magnetooptycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Selected nonlinear optical phenomena in photonic microstructures and in magnetooptical media
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono opis wybranych zjawisk nieliniowych drugiego i trzeciego rzędu, w których wykorzystywana jest zarówno specyfika struktur falowodowych wykonanych z różnych materiałów, jak również indukowana zewnętrznym polem magnetycznym dwójłomność optyczna pozwalająca na uzyskanie quasi-stacjonarnych rozwiązań w objętościowym ośrodku kerrowskim. Niniejsze opracowanie zawiera opis teoretyczny rozpatrywanych zagadnień, a także wyniki badań eksperymentalnych. Przeanalizowane w pracy procesy i zjawiska typowe dla optyki nieliniowej, takie jak przykładowo generacja drugiej harmonicznej, samoogniskowanie światła, czy generacja solitonów przestrzennych w ośrodkach kerrowskich, zostały opisane na podstawie oryginalnych badań własnych autorki. Wskazuje ona przy tym, że odmienne mechanizmy nieliniowości występujące w różnych badanych przez nią ośrodkach materialnych wpływają na przebieg analizowanych zjawisk nieliniowych i umożliwiają ich potencjalne zastosowania przy praktycznym konstruowaniu układów i urządzeń fotonicznych. W monografii opisane zostały zarówno różnorodne metody analityczne i numeryczne stosowane przy analizie zagadnień związanych z propagacją światła i projektowaniu struktur fotonicznych, jak również metody pomiarowe i techniki eksperymentalne stosowane przy charakteryzacji i optymalizacji struktur i układów optycznych wykorzystywanych w optyce nieliniowej.
EN
In this work selected second- and third-order optical nonlinear phenomena are described, in which unique properties of waveguiding structures made of various materials as well as magnetically induced optical birefringence allowing for quasi-stationary solutions in bulk Kerr-type media are utilized. Presented studies include both theoretical description of the analyzed subjects, as well as experimental results. Based on original research achievements of the author, selected nonlinear optical processes and phenomena, such as, for example, second harmonic generation, self-focusing and spatial solitons generation in Kerr-type media are considered. It is indicated that different mechanisms of nonlinearity occurring in various materials under investigations influence nonlinear processes and thus allow for potential application of prospective photonic devices and systems. This treatise describes various analytical an numerical methods used for analyses of light propagation in selected photonic structures as well as measurement methods and experimental techniques applied for characterization and optimization of the proposed structures and systems to be used in nonlinear optics.
Rocznik
Tom
Strony
3--181
Opis fizyczny
Bibliogr. 336 poz., rys., wykr.
Twórcy
  • Wydział Fizyki, Politechnika Warszawska
Bibliografia
  • Bibliografia do rozdz. 2
  • 1. R. W. Boyd, Nonlinear Optics, Academic Press/Elsevier, Inc. Oxford, 2008.
  • 2. J. Giordmaine, Mixing of light beams in crystals, Phys. Rev. Lett. 8, 19 (1962).
  • 3. P. Maker, R. Terhune, M. Nisenoff, C. Savage, Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8, 21 (1962).
  • 4. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, J. Nagle, Phase matching using an isotropic nonlinear optical material, Nature 391, 463 (1998).
  • 5. T. Kowalczyk, P. Cahill, K. Singer, Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide, Opt. Lett. 20, 2273 (1995).
  • 6. P. Abolghasem, J. Han, D. Kang, B.J. Bijlani, A.S. Helmy, Monolithic photonics using second-order optical nonlinearities in multilayer-core Bragg reflection waveguides, IEEE Journal of Selected Topics in Quantum Electronics 18, 812 (2012).
  • 7. W. Sohler, H. Suche, Second harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency, Appl. Phys. Lett. 33, 518 (1978).
  • 8. D. Anderson, J. Boyd, Wideband CO2 Laser Second Harmonic Generation Phase Matched in GaAs Thin-Film Waveguides, Appl. Phys. Lett. 19, 266 (1971).
  • 9. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, M. Calligaro, Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides, Appl. Phys. Lett. 84, 2974 (2004).
  • 10. S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques, Journal of Optics A: Pure and Applied Optics 6, 569 (2004).
  • 11. Y. Ishigame, T. Suhara, H. Nishihara, LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating, Opt. Lett. 16, 375 (1991).
  • 12.X. Yu, L. Scaccabarozzi, J. Harris Jr, P. Kuo, M. Fejer, Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides, Optics Expr. 13, 10742 (2005).
  • 13. A. Fiore, S. Janz, L. Delobel, P. Van der Meer, P. Bravetti, V. Berger, E. Rosencher, J. Nagle, Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching, Appl. Phys. Lett. 72, 2942 ( 1998).
  • 14. L. Scaccabarozzi, M.M. Fejer, Y. Huo, S. Fan, X. Yu, J.S. Harris, Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities, Opt. Lett. 31, 3626 (2006).
  • 15. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjdani, J. Nagle, Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides, Appl. Phys. Lett. 68, 1320 (1996).
  • 16. M.M. Fejer, G. Magel, D.H. Jundt, R.L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE Journal of Quantum Electronics 28, 2631 (1992).
  • 17. Z. Yang, P. Chak, A.D. Bristow, H.M. van Driel, R. Iyer, J. S. Aitchison, A.L. Smirl, J. Sipe, Enhanced second-harmonic generation in AlGaAs microring resonators, Opt. Lett. 32, 826 (2007).
  • 18. K.R. Parameswaran, R.K. Route, J.R. Kurz, R.V. Roussev, M.M. Fejer, M. Fujimura, Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate, Opt. Lett. 27, 179 (2002).
  • 19. D. Duchesne, K. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, Second harmonic generation in AlGaAs photonic wires using low power continuous wave light, Optics Expr. 19, 12408 (2011).
  • 20. K. Rutkowska, D. Duchesne, M. Volatier, R. Arès, V. Aimez, R. Morandotti, Second Harmonic Generation in AlGaAs Nanowaveguides, Acta Phys. Polonica A 120, 725 (2011).
  • 21. P. Franken, A. Hill, C. Peters, G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7, 118 (1961).
  • 22. M.M. Fejer, Nonlinear optical frequency conversion, Phys. Today 47, 25 (1994).
  • 23. A. Arie, K. Fradkin-Kashi, Y. Shreberk, Frequency conversion in novel materials and its application to high resolution gas sensing, Optics and Lasers in Eng. 37, 159 (2002).
  • 24. W. Petrich, Mid-infrared and Raman spectroscopy for medical diagnostics, Appl. Spectroscopy Rev. 36, 181 (2001).
  • 25. R. Curl, F. Tittel, Tunable infrared laser spectroscopy, Annual Reports C (Phys. Chem.) 98, 219 (2002).
  • 26. S. Tanzilli, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, N. Gisin, Highly efficient photon-pair source using periodically poled lithium niobate waveguide, Electron. Lett. 37, 26 (2001).
  • 27. C. Langrock, S. Kumar, J. E. McGeehan, A. Willner, M. Fejer, All-optical signal processing using x(2) nonlinearities in guided-wave devices, Journal of Lightwave Technology 24, 2579 (2006).
  • 28. A. Zheltikov, Limiting efficiencies of second-harmonic generation and cascaded x(2) processes in quadratically nonlinear photonic nanowires, Opt. Commun. 270, 402 (2007).
  • 29. J. Armstrong, N. Bloembergen, J. Ducuing, P. Pershan, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962).
  • 30. P.J. van der Houwen, The development of Runge-Kutta methods for partial differential equations, Appl. Numerical Mathematics 20, 261 (1996).
  • 31. C. Sterke, K.R. Jackson, B.D. Robert, Nonlinear coupled-mode equations on a finite interval: a numerical procedure, Journal of the Optical Society of America B 8, 403 (1991).
  • 32. R.L. Sutherland, Handbook of nonlinear optics, CRC Press, 2003.
  • 33. P. Chmela, J. Petykiewicz, Wprowadzenie do optyki nieliniowej, Państwowe Wydawnictwo Naukowe, 1987.
  • 34. S.E. Miller, Integrated optics: An introduction, Bell System Technical Journal 48, 2059 (1969).
  • 35. P. Tien, R. Ulrich, R. Martin, Optical second harmonic generation in form of coherent Cerenkov Radiation from a thin-film waveguide, Appl. Phys. Lett. 17, 447 (1970).
  • 36. G. Assanto, All-optical integrated nonlinear devices, Journal of Modern Optics 37, 855 (1990).
  • 37. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip, Nature 431, 1081 (2004).
  • 38. E. Kehayas, J. Seoane, Y. Liu, J. M. Martinez, J. Herrera, P.V. Holm Nielsen, S. Zhang, R. McDougall, G. Maxwell, F. Ramos, J. Marti, H.J.S. Dorren, P. Jeppesen, H. Avramopoulos, All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks, IEEE Photonics Technology Letters 18, 1750 (2006).
  • 39. S. Silvi, E.C. Constable, C.E. Housecroft, J.E. Beves, E.L. Dunphy, M. Tomasulo, F.M. Raymo, A. Credi, All-optical integrated logic operations based on chemical communication between molecular switches, European Journal of Chemistry 15, 178 (2009).
  • 40. M. Ohashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, S. Kano, Determination of quadratic nonlinear optical coefficient of AlxGa1-x As system by the method of reflected second harmonics, J. Appl. Phys. 7 4, 596 (1993).
  • 41. D. Duchesne, K. Rutkowska, M. Volatier, F. Legare, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, Continuous-wave second harmonic generation in sub-micron AlGaAs waveguides in Nonlinear Photonics, Optical Society of America 2010.
  • 42. D. Duchesne, K. Rutkowska, M. Volatier, F. Legare, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, D. Christodoulides, Integrated, continuous wave second harmonic source using AlGaAs photonic wire waveguides in Frontiers in Optics, Optical Society of America 2010.
  • 43. M. Volatier, D. Duchesne, R. Morandotti, R. Ares, V. Aimez, Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation, Nanotechnology 21, 134014 (2010).
  • 44. S. Adachi, GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications, J. Appl. Phys. 58, R l (1985).
  • 45. A.N. Pikhtin, A.D. Yas'kov, Dispersion of the refractive index of semiconducting solid solutions with the sphalerite structure, Sov. Phys. Semicond. 14, 389 (1980).
  • 46. S. Gehrsitz, F. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg, The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling, J. Appl. Phys. 87, 7825 (2000).
  • 47. S. Zollner, Optical constants and critical-point parameters of GaAs from 0.73 to 6.60eV, J. Appl. Phys. 90, 515 (2001).
  • 48. J.P. Kim, A. M. Sarangan, Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-x,As, Opt. Lett. 32, 536 (2007).
  • 49. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, I. Cristiani, Nonlinear properties of AlGaAs waveguides in continuous wave operation regime, Optics Expr. 22, 5291 (2014).
  • 50. G.A. Porkolab, P. Apiratikul, B. Wang, S. Guo, C.J. Richardson, Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow, Optics Expr. 22, 7733 (2014).
  • 51. D. Duchesne, R. Morandotti, G.A. Siviloglou, R. El-Ganainy, G.I. Stegeman, D.N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation in International Symposium on Signals, Systems and Electronics, IEEE, 2007.
  • 52. J. Meier, W. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, J. Aitchison, Group velocity inversion in AlGaAs nanowires, Optics Expr. 15, 12755 (2007).
  • 53. M.A. Foster, A.C. Turner, M. Lipson, A.L. Gaeta, Nonlinear optics in photonic nanowires, Optics Expr. 16, 1300 (2008).
  • 54. G.A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G.I. Stegeman, D.N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, Enhanced third-order nonlinear effects in optical AlGaAs nanowires, Optics Expr. 14, 9377 (2006).
  • 55. J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, A. Villeneuve, The nonlinear optical properites of AlGaAs at the half band gap, IEEE Journal of Quantum Electronics 33, 341 (1997).
  • 56. J. Aitchison, A. Kean, C. Ironside, A. Villeneuve, G. Stegeman, Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region, Electron. Lett. 27, 1709 (1991).
  • 57. C. Yang, A. Villeneuve, G. Stegeman, C. Lin, H. Lin, Measurements of two-photon absorption coefficient and induced nonlinear refractive-index in GaAs/AlGaAs multiquantum well waveguides, Electron. Lett. 29, 37 (1993).
  • 58. D.C. Hutchings, Theory of ultrafast nonlinear refraction in semiconductor superlattices, IEEE Journal of Selected Topics in Quantum Electronics 10, 1124 (2004).
  • 59. S.J. Wagner, J. Meier, A. Helmy, J.S. Aitchison, M. Sorel, D.C. Hutchings, Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap, Journal of the Optical Society of America B 24, 1557 (2007).
  • 60. D. Hutchings, B. Wherrett, G. Kennedy, W. Sibbett, J. Aitchison, Polarization dependence of ultrafast nonlinear refraction in an AlGaAs waveguide at the half-band gap, Opt. Lett 20, 991 (1995).
  • 61. J. Aitchison, K. Al-Hemyari, C. Ironside, R. Grant, W. Sibbett, Observation of spatial solitons in AlGaAs waveguides, Electron. Lett. 28, 1879 ( 1992).
  • 62. A. Villeneuve, C. Yang, P. Wigley, G. Stegeman, J. Aitchison, C. Ironside, Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap, Appl. Phys. Lett. 61, 147 (1992).
  • 63. V. Van, T. Ibrahim, K. Ritter, P. Absil, F. Johnson, R. Grover, J. Goldhar, P. Ho, All-optical nonlinear switching in GaAs-AlGaAs microring resonators, IEEE Photonics Technology Letters 14, 74 (2002).
  • 64. K. Moutzouris, S .V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, V. Berger, Second-harmonic generation through optimized modal phase matching in semiconductor waveguides, Appl. Phys. Lett. 83, 620 (2003).
  • 65. P. Dong, J. Upham, A. Jugessur, A. G. Kirk, Observation of continuous-wave second-harmonic generation in semiconductor waveguide directional couplers, Optics Expr. 14, 2256 (2006).
  • 66. T. Dai, K.D. Singer, R.J. Twieg, T.C. Kowalczyk, Anomalous-dispersion phase-matched second-harmonic generation in polymer waveguides: chromophores for increased efficiency and ultraviolet stability, Journal of the Optical Society of America B 17, 412 (2000).
  • 67. Z.T. Durski, H.T. Durska, Podstawy krystalografii, Oficyna Wydawnicza Politechniki Warszawskiej, 2003.
  • 68. H. Ishikawa, T. Kondo, Birefringent phase matching in thin rectangular high-index-contrast waveguides, Applied Physics Expr. 2, 042202 (2009).
  • 69. J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, S. Pearton, Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas, Journal of Vacuum Science and Technology A 18, 1220 (2000).
  • 70. J.W. Lee, M.H. Jeon, M. Devre, K.O. Mackenzie, D. Johnson, J.N. Sasserath, S.J. Pearton, F. Ren, R.J. Shul, Understanding of etch mechanism and etch depth distribution in inductively coupled plasma etching of GaAs, Solid-State Electronics 45, 1683 (2001).
  • 71. I. Moerman, P.P. Van Daele, P. M. Demeester, A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices, IEEE Journal of Selected Topics in Quantum Electronics 3, 13 08 ( 1998).
  • 72. V. R. Almeida, R.R. Panepucci, M. Lipson, Nanotaper for compact mode conversion, Opt. Lett. 28, 1302 (2003).
  • 73. G. Tittelbach, B. Richter, W. Karthe, Comparison of three transmission methods for integrated optical waveguide propagation loss measurement, Pure and Applied Optics: Journal of the European Optical Society A 2, 683 (1993).
  • 74. M. Haruna, Y. Segawa, H. Nishihara, Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling, Electron. Lett. 28, 1612 (1992).
  • 75. D. Duchense, P. Cheben, R.A. Morandotti, B. Lamontagne, D. Xu, S. Janz, D.N. Christodoulides, Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides, Optical Eng. 46, 104602 (2007).
  • 76. H. Nishihara, M. Haruna, T. Suhara, Optical integrated circuits in Electro-optics Handbook (eds. R. W. Waynant, M.N. Ediger), McGraw-Hill, New York, 2000.
  • 77. E. Hecht, Optics, Fourth Edition, Pearson Education Limited, 2014.
  • 78. D. Clark, M. Iqbal, Simple extension to the Fabry-Pérot technique for accurate measurement of losses in semiconductor waveguides, Opt. Lett. 15, 1291 (1990).
  • 79. S. Yoo, R. Bhat, C. Caneau, M. Koza, Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Appl. Phys. Lett. 66, 3410 (1995).
  • 80. A. Jaouad, V. Aimez, Passivation of air-exposed AlGaAs using low frequency plasma-enhanced chemical vapor deposition of silicon nitride, Appl. Phys. Lett. 89, 092125 (2006).
  • Bibliografia do rozdz. 3
  • 1. C. Sulem, P. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, Springer, 1999.
  • 2. E. Infeld, G. Rowlands, Nonlinear waves, solitons and chaos, Cambridge University Press, 2000.
  • 3. S. Trillo, W. Torruellas, Spatial solitons, Springer, 2001.
  • 4. Y.S. Kivshar, G. Agrawal, Optical solitons: from fibers to photonic crystals, Academic press, 2003.
  • 5. R. W. Boyd, Nonlinear optics, Academic Press, 2003.
  • 6. B. Malomed, Nonlinear Schrödinger equations in Encyclopedia of Nonlinear Science (ed. A Scott), Routledge, New York, 2005.
  • 7. G.I. Stegeman, M. Segev, Optical spatial solitons and their interactions: universality and diversity, Science 286, 1518 (1999).
  • 8. R.Y. Chiao, E. Garmire, C. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13, 479 (1964).
  • 9. G. Fibich, A.L. Gaeta, Critical power for self-focusing in bulk media and in hollow waveguides, Opt. Lett. 25, 335 (2000).
  • 10. K. Moll, A.L. Gaeta, G. Fibich, Self-similar optical wave collapse: observation of the Townes profile, Phys. Rev. Lett. 90, 203902 (2003).
  • 11. A. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos, Solitons and Fractals 37, 1136 (2008).
  • 12. T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, M. Ueda, D-wave collapse and explosion of a dipolar Bose-Einstein condensate, Phys. Rev. Lett. 101, 080401 (2008).
  • 13. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, T. Pfau, Stabilization of a purely dipolar quantum gas against collapse, Nature Physics 4, 218 (2008).
  • 14. P. Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005 (1965).
  • 15. L. Berge, Wave collapse in physics: principles and applications to light and plasma waves, Physics Reports 303, 259 (1998).
  • 16. T.D. Grow, A.A. Ishaaya, L.T. Vuong, A.L. Gaeta, Collapse and stability of necklace beams in Kerr media, Phys. Rev. Lett. 99, 133902 (2007).
  • 17. B.W. Zeff, B. Kleber, J. Fineberg, D.P. Lathrop, Singularity dynamics in curvature collapse and jet eruption on a fluid surface, Nature 403, 401 (2000).
  • 18. P. Robinson, Nonlinear wave collapse and strong turbulence, Reviews of Modern Physics 69, 507 (1997).
  • 19. Y. Silberberg, Collapse of optical pulses, Opt. Lett. 15, 1282 (1990).
  • 20. F. Wise, P.D. Trapani, Spatiotemporal solitons, Opt. Photonics News 13, 28 (2002).
  • 21. B.A. Malomed, D. Mihalache, F. Wise, L. Torner, Spatiotemporal optical solitons, Journal of Optics B: Quantum and Semiclassical Optics 7, R53 (2005).
  • 22. A. Chong, W.H. Renninger, D.N. Christodoulides, F.W. Wise, Airy-Bessel wave packets as versatile linear light bullets, Nature Photonics 4, 103 (2010).
  • 23. Y.S. Kivshar, D.E. Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Physics Reports 331, 117 (2000).
  • 24. A.L. Gaeta, Catastrophic collapse of ultrashort pulses, Phys. Rev. Lett. 84, 3582 (2000).
  • 25. G. Fibich, G. Papanicolaou, Self-focusing in the presence of small time dispersion and nonparaxiality, Opt. Lett. 22, 1379 (1997).
  • 26. D. Cheskis, S. Bar-Ad, R. Morandotti, J. Aitchison, H. Eisenberg, Y. Silberberg, D. Ross, Strong spatiotemporal localization in a silica nonlinear waveguide array, Phys. Rev. Lett. 91, 223901 (2003).
  • 27. N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Does the nonlinear Schrodinger equation correctly describe beam propagation?, Opt. Lett. 18, 411 (1993).
  • 28. G. Fibich, B. Ilan, Optical light bullets in a pure Kerr medium, Opt. Lett. 29, 887 (2004).
  • 29. A.S. Desyatnikov, D. Buccoliero, M.R. Dennis, Y.S. Kivshar, Suppression of collapse for Spiraling elliptic solitons, Phys. Rev. Lett. 104, 053902 (2010).
  • 30. S. Gatz, J. Herrmann, Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable nonlinear refractive index, Journal of the Optical Society of America B 14, 1795 (1997).
  • 31. V. Skarka, V. Berezhiani, R. Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media, Physical Review E 56, 1080 (1997).
  • 32. O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, Collapse arrest and soliton stabilization in nonlocal nonlinear media, Physical Review E 66, 046619 (2002).
  • 33. M. Peccianti, K.A. Brzdąkiewicz, G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals, Opt. Lett. 27, 1460 (2002).
  • 34. P. Pedri, L. Santos, Two-dimensional bright solitons in dipolar Bose-Einstein condensates, Phys. Rev. Lett. 95, 200404 (2005).
  • 35. I. Towers, B.A. Malomed, Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity, Journal of the Optical Society of America B 19, 537 (2002).
  • 36. F.K. Abdullaev, J .G. Caputo, R.A. Kraenkel, B.A. Malomed, Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length, Physical Review A 67, 013605 (2003).
  • 37. H. Saito, M. Ueda, Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate, Phys. Rev. Lett. 90, 040403 (2003).
  • 38. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, G. Fibich, Control of the filamentation distance and pattern in long-range atmospheric propagation, Optics Expr. 15, 2779 (2007).
  • 39. J. Yang, Z.H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28, 2094 (2003 ).
  • 40. B.A. Malomed, Polarization dynamics and interactions of solitons in a birefringent optical fiber, Physical Review A 43, 410 (1991).
  • 41. C.R. Menyuk, Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes, Opt. Lett. 12, 614 (1987).
  • 42. C.R. Meyuk, Stability of solitons in birefiringert optical fibers. II. Arbitrary amplitudes, Journal of the Optical Society of America B 5, 392 (1988).
  • 43. S. Trillo, S. Wabnitz, E. Wright, G. Stegeman, Polarized soliton instability and branching in birefringent fibers, Opt. Commun. 70, 166 (1989).
  • 44. Y. Barad, Y. Silberberg, Polarization evolution and polarization instability of solitons in a birefringent optical fiber, Phys. Rev. Lett. 78, 3290 ( 1997).
  • 45. P. Kurzynowski, W. Woźniak, Superposition rule for the magneto-optic effects in isotropic media, Optik-International Journal for Light and Electron Optics 115, 473 (2004).
  • 46. A.K. Zvezdin, Y.A. Kotov, Modern magnetooptics and magnetooptical materials, CRC Press, 2010.
  • 47. J. Dillon Jr, J. Remeika, C. Staton, Linear Magnetic Birefringence in the Ferrimagnetic Garnets, J. Appl. Phys. 41,4613 (1970).
  • 48. J. Ferré, G. Gehring, Linear optical birefringence of magnetic crystals, Reports on Progress in Physics 47, 513 (1984).
  • 49. G. Scott, D. Lacklison, H. Ralph, J. Page, Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12, Physical Review B 12, 2562 (1975).
  • 50. P. Stephens, Magnetic circular dichroism, Annu. Rev. Phys. Chem. 25, 201 (1974).
  • 51. G. Smolenskii, R. Pisarev, I. Sinii, Birefringence of light in magnetically ordered crystals, Soviet Physics Uspekhi 18,410 (1975).
  • 52. R. Ballagh, K. Burnett, T. Scott, Theory of an output coupler for Bose-Einstein condensed atoms, Phys. Rev. Lett. 78, 1607 (1997).
  • 53. B.A. Malomed, Variational methods in nonlinear fiber optics and related fields, Progress in Optics 43, 71 (2002).
  • 54. M. Desaix, D. Anderson, M. Lisak, Variational approach to collapse of optical pulses, Journal of the Optical Society of America B 8, 2082 (1991).
  • 55. J. Liu, Photonic devices, Cambridge University Press, 2005.
  • 56. O. Kamada, T. Nakaya, and S. Higuchi, Magnetic field optical sensors using Ce: YIG single crystals as a Faraday element, Sensors and Actuators A: Physical 119, 345 (2005).
  • 57. M.C. Sekhar, J. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, R. Morandotti, Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films, Appl. Phys. Lett. 94, 181916 (2009).
  • 58. A.Wood, J. Remeika, Effect of impurities on the optical properties of yttrium iron garnet, J. Appl. Phys. 38, 1038 (1967).
  • 59. Y. Chen, Stability criterion of coupled soliton states, Physical Review E 57, 3542 (1998).
  • Bibliografia do rozdz. 4
  • 1. T. Peschel, R. Muschall, F. Lederer, Power-controlled beam steering in nonequidistant arrays of nonlinear waveguides, Opt. Commun. 136, 16 (1997).
  • 2. D.N. Christodoulides, E.D. Eugenieva, Blocking routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays, Phys. Rev. Lett. 87, 233901 (2001).
  • 3. D.N. Christodoulides, E.D. Eugenieva, Minimizing bending losses in two-dimensional discrete soliton networks, Opt. Lett. 26, 1876 (2001).
  • 4. E.D. Eugenieva, N.K. Efremidis, D.N. Christodoulides, Design of switching junctions for two-dimensional discrete soliton networks, O pt. Lett. 26, 1978 (2001).
  • 5. W. Królikowski, Y.S. Kivshar, Soliton-based optical switching in waveguide arrays, Journal of the Optical Society of America B 13, 876 (1996).
  • 6. R. Morandotti, U. Peschel, J. Aitchison, H. Eisenberg, Y. Silberberg, Dynamics of discrete solitons in optical waveguide arrays, Phys. Rev. Lett. 83, 2726 (1999).
  • 7. T. Pertsch, U. Streppel, T. Zentgraf, P. Dannberg, A.H. Braeuer, U. Peschel, F.L. Lederer, Temperature-controlled beam steering in polymer waveguide arrays, Proc. SPIE 4106, 86 (2000).
  • 8. R.A. Vicencio, M.I. Molina, Y.S. Kivshar, Controlled switching of discrete solitons in waveguide arrays, Opt. Lett. 28, 1942 (2003).
  • 9. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, F. Lederer, Beam steering in waveguide arrays, Appl. Phys. Lett. 80, 3247 (2002).
  • 10. A. Fratalocchi, G. Assanto, K.A. Brzdąkiewicz, M.A. Karpierz, All-optical switching and beam steering in tunable waveguide arrays, Appl. Phys. Lett. 86, 051112 (2005).
  • 11. D. Christodoulides, R. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides, Opt. Lett. 13, 794 (1988).
  • 12. T. Peschel, U. Peschel, F. Lederer, Discrete bright solitary waves in quadratically nonlinear media, Phys. Rev. E 57, 1127 (1998).
  • 13. F. Lederer, S. Darmanyan, A. Kobyakov, Discrete solitons in Spatial Solitons, pp. 269-292, Springer, 2001.
  • 14. F. Lederer, Y. Silberberg, Discrete solitons, Opt. Photonics News 13, 48 (2002).
  • 15. D.N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424, 817 (2003).
  • 16. A.A. Sukhorukov, Y.S. Kivshar, Spatial optical solitons in nonlinear photonic crystals, Phys. Rev. E 65, 036609 (2002).
  • 17. A.A. Sukhorukov, Y.S. Kivshar, H.S. Eisenberg, Y. Silberberg, Spatial optical solitons in waveguide arrays, IEEE Journal of Quantum Electronics 39, 31 (2003).
  • 18. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Discrete solitons in optics, Physics Reports 463, 1 (2008).
  • 19. R. Morandotti, H. Eisenberg, Y. Silberberg, M. Sorel, J. Aitchison, Self-focusing and defocusing in waveguide arrays, Phys. Rev. Lett. 86, 3296 (2001).
  • 20. H. Eisenberg, R. Morandotti, Y. Silberberg, J. Arnold, G. Pennelli, J. Aitchison, Optical discrete solitons in waveguide arrays. 1. Soliton formation, Journal of the Optical Society of America B 19, 2938 (2002).
  • 21. U. Peschel, R. Morandotti, J.M. Arnold, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, T. Pertsch, F. Lederer, Optical discrete solitons in waveguide arrays. 2. Dynamic properties, Journal of the Optical Society of America B 19, 2637 (2002).
  • 22. J. Meier, G.I Stegeman, Y. Silberberg, R. Morandotti, J. Aitchison, Nonlinear optical beam interactions in waveguide arrays, Phys. Rev. Lett. 93, 093901 (2004)
  • 23. M. Belabas, S. Bouchoule, I. Sagnes, J. A. Levenson, C. Minot, J. Moison, Confining light flow in weakly coupled waveguide arrays by structuring the coupling constant: towards discrete diffractive optics, Optics Expr. 17, 3148 (2009).
  • 24. N. Belabas, C. Minot, J.A. Levenson, J. Moison, Ab initio design, experimental validation, and scope of coupling coefficients in waveguide arrays and discrete photonics patterns, IEEE Journal of Lightwave Technology 29, 3009 (2011).
  • 25. D. Cheskis, S. Bar-Ad, R. Morandotti, J. Aitchison, H. Eisenberg, Y. Silberberg, D. Ross, Strong spatio-temporal localization in a silica nonlinear waveguide array, Phys. Rev. Lett. 91, 223901 (2003).
  • 26. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, Discrete diffraction in two-dimensional arrays of coupled waveguides in silica, Opt. Lett. 29, 468 (2004).
  • 27. T. Pertsch, T. Zentgraf, U. Peschel, S. Bar-Ad, F. Lederer, Anomalous refraction and diffraction in discrete optical systems, Phys. Rev. Lett. 88, 093901 (2002).
  • 28. E. Zeller, G.C. Devendra, T.G. Nguyen, A. Mitchell, Fluid tunable transition from trapping to discrete diffraction in waveguide arrays, Optics Expr. 21, 18196 (2013).
  • 29. N.K. Efremidis, S. Sears, D.N. Christodoulides, J. W. Fleischer, M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E 66, 046602 (2002).
  • 30. E. DelRe, M. Segev, Self-focusing and solitons in photorefractive media, in Self-Focusing and filaments of light Past and Present, Y.R. Shen (ed.), pp. 547-572, Springer, 2009.
  • 31. J. W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, D.N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett. 90, 023902 (2003).
  • 32. J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422, 147 (2003).
  • 33. R. Iwanow, R. Schiek, G. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Observation of discrete quadratic solitons, Phys. Rev. Lett. 93, 113902 (2004).
  • 34. R. Iwanow, R. Schiek, G. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Arrays of weakly coupled, periodically poled lithium niobate waveguides: beam propagation and discrete spatial quadratic solitons, Opto-Electr. Rev. 13, 113 (2005).
  • 35. F. Chen, C. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, M. Segev, Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays, Optics Expr. 13, 4314 (2005).
  • 36. G. Assanto, A. Fratalocchi, M. Peccianti, Spatial solitons in nematic liquid crystals: from bulk to discrete, Optics Expr. 15, 5248 (2007).
  • 37. A. Fratalocchi, G. Assanto, Discrete light localization in one-dimensional nonlinear lattices with arbitrary nonlocality, Phys. Rev. E 72, 066608 (2005).
  • 38. A. Fratalocchi, G. Assanto, M. Karpierz, Discrete light propagation and self-trapping in liquid crystals, Optics Expr. 13, 1808 (2005).
  • 39. A. Fratalocchi, G. Assanto, K.A. Brzdąkiewicz, M.A. Karpierz, Optical multiband vector breathers in tunable waveguide arrays, Opt. Lett. 30, 174 (2005).
  • 40. A. Fratalocchi, G. Assanto, K.A. Brzdąkiewicz, M.A. Karpierz, Optically induced Zener tunneling in one-dimensional lattices, Opt. Lett. 31, 790 (2006).
  • 41. F. Bennet, J. Farnell, Waveguide arrays in selectively infiltrated photonic crystal fibres, Opt. Commun. 283, 4069 (2010).
  • 42. F.H. Bennet, LA. Amuli, A.A. Sukhorukov, W. Krolikowski, D.N. Neshev, Y.S. Kivshar, Focusing-to-defocusing crossover in nonlinear periodic structures, Opt. Lett. 35, 3213 (2010).
  • 43. F.H. Bennet, M.I. Molina, Nonlinear light localization around the core of a holey fiber, Journal of the Optical Society of America B 29, 2161 (2012).
  • 44. X. Liu, Y. Liu, W. Sun, J. Wang, Z. Huang, The propagation characters of selective-filled photonic crystal fibres, Liquid Crystals 40, 565 (2013).
  • 45. C.R. Rosberg, F.H. Bennet, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, Y.S. Kivshar, Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers, Optics Expr. 15, 12145 (2007).
  • 46. M. Vieweg, T. Gissibl, Y.V. Kartashov, L. Torner, H. Giessen, Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity. Opt. Lett. 37, 2454 (2012).
  • 47. K. Rutkowska, U. Laudyn, P. Jung, All-optical control of discrete light propagation in Photonic Liquid Crystal Fibers in IEEE Conference on Lasers and Electro-Optics Europe and International Quantum Electronics, 2013.
  • 48. K.A. Rutkowska, U.A. Laudyn, P.S. Jung, Tunability of discrete diffraction in photonic liquid crystal fibres, Opto-Electr. Review 22, 207 (2014).
  • 49. Y. Liu, G. Bartal, D.A. Genov, X. Zhang, Subwavelength discrete solitons in nonlinear metamaterials, Phys. Rev. Lett. 99, 153901 (2007).
  • 50. N.N. Rosanov, N. V. Vysotina, A.N. Shatsev, I.V. Shadrivov, D.A. Powell, Y.S. Kivshar, Discrete dissipative localized modes in nonlinear magnetic metamaterials, Optics Expr. 19, 26500 (2011).
  • 51. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, 2006.
  • 52. H. Eisenberg, Y. Silberberg, R. Morandotti, J. Aitchison, Diffraction management, Phys. Rev. Lett. 85, 1863 (2000).
  • 53. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, Cambridge University Press, 2004.
  • 54. P. Kevrekidis, K. Rasmussen, A. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results, International Journal of Modern Physics B 15, 2833 (2001).
  • 55. D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Physica D 212, 1 (2005).
  • 56. U. Peschel, T. Pertsch, F. Lederer, Optical Bloch oscillations in waveguide arrays, Opt. Lett. 23, 1701 (1998).
  • 57. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, F. Lederer, Optical Bloch oscillations in temperature tuned waveguide arrays, Phys. Rev. Lett. 83, 4752 (1999).
  • 58. R. Morandotti, U. Peschel, J. Aitchison, H. Eisenberg, Y. Silberberg, Experimental observation of linear and nonlinear optical Bloch oscillations, Phys. Rev. Lett. 83, 4756 (1999).
  • 59. A. Szameit, T. Pertsch, S. Nolte, A. Tünnermann, U. Peschel, F. Lederer, Optical Bloch oscillations in general waveguide lattices, Journal of the Optical Society of America B 24, 2632 (2007).
  • 60. S. Darmanyan, A. Kobyakov, F. Lederer, Stability of strongly localized excitations in discrete media with cubic nonlinearity, Journal of Experimental and Theoretical Physics 86, 682 (1998).
  • 61. J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N. Christodoulides, Observation of vortex-ring discrete solitons in 2D photonic lattices, Phys. Rev. Lett. 92, 123904 (2004).
  • 62. J. Yang, I. Makasyuk, P. Kevrekidis, H. Martin, B. Malomed, D. Frantzeskakis, Z. Chen, Neck-lacelike solitons in optically induced photonic lattices, Phys. Rev. Lett. 94, 113902 (2005).
  • 63. S. Darmanyan, A. Kobyakov, F. Lederer, Asymmetric dark solitons in nonlinear lattices, Journal of Experimental and Theoretical Physics 93, 429 (2001).
  • 64. S. Darmanyan, A. Kobyakov, F. Lederer, L. Vazquez, Discrete fronts and quasi-rectangular solitons, Physical Review B 59, 5994 (1999)
  • 65. K. Sakoda, Optical properties of photonic crystals, Springer, 2005.
  • 66. C. Carniglia, L. Mandel, Quantization of evanescent electromagnetic waves, Physical Review D 3, 280 (1971).
  • 67. K.A. Brzdąkiewicz, M. Karpierz, A. Fratalocchi, G. Assanto, Discrete optical solitons in nematic liquid crystals, Molecular Crystals and Liquid Crystals 421, 61 (2004).
  • 68. A. Fratalocchi, G. Assanto, K.A. Brzdąkiewicz, M.A. Karpierz, Discrete propagation and spatial solitons in nematic liquid crystals, Opt. Lett. 29, 1530 (2004).
  • 69. K.A. Brzdąkiewicz, M. Karpierz, A. Fratalocchi, G. Assanto, E. Nowinowski-Kruszelnicki, Nematic liquid crystal waveguide arrays, Opto-Electr. Review 13, 107 (2005).
  • 70. I.C. Khoo, Nonlinear optics of liquid crystalline materials, Physics Reports 471, 221 (2009).
  • 71. I. Khoo, Liquid Crystals, Hoboken, 2007.
  • 72. P. De Gennes J. Prost, The Physics of Liquid Crystals, Oxford University Press, 1993.
  • 73. I.C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, Wiley-VCH, 1994.
  • 74. A . Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, S. Wabnitz, Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays, Physical Review E 53, 1172 (1996).
  • 75. N. Ashcroft, N. Mermin, Solid State Physics, Holt-Saunders, Tokyo, 1981.
  • 76. M. Mitchell, M. Segev, D.N. Christodoulides, Observation of multihump multimode solitons, Phys. Rev. Lett. 80, 4657 (1998).
  • 77. J. Hudock, P. Kevrekidis, B. Malomed, D. Christodoulides, Discrete vector solitons in two-dimensional nonlinear waveguide arrays: Solutions, stability, and dynamics, Phys. Rev. E 67, 056618 (2003).
  • 78. J. Meier, J. Hudock, D. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, J. Aitchison, Discrete vector solitons in Kerr nonlinear waveguide arrays, Phys. Rev. Lett. 91, 143907 (2003).
  • 79. D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, J. Aitchison, Observation of mutually trapped multiband optical breathers in waveguide arrays, Phys. Rev. Lett. 90, 253902 (2003).
  • 80. J. Feng, Alternative scheme for studying gap solitons in an infinite periodic Kerr medium, Opt. Lett. 18, 1302 (1993).
  • 81. C. Zener, Non-adiabatic crossing of energy levels, Proceedings of the Royal Society of London. Series A, 696 (1932).
  • 82. J. Liu, L. Fu, B. Ou, S. Chen, D. Choi, B. Wu, Q. Niu, Theory of nonlinear Landau-Zener tunneling, Phys. Rev. A 66, 023404 (2002).
  • 83. V. Konotop, P. Kevrekidis, M. Salerno, Landau-Zener tunneling of Bose-Einstein condensates in an optical lattice, Phys. Rev. A 72, 023611 (2005).
  • 84. R. Khomeriki, S. Ruffo, Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index, Phys. Rev. Lett. 94, 113904 (2005).
  • 85. B. Wu, Q. Niu, Nonlinear Landau-Zener tunneling, Phys. Rev. A 61, 023402 (2000).
  • 86. A. Fratalocchi, G. Assanto, All-optical Landau-Zener tunneling in waveguide arrays, Optics Expr. 14, 2021 (2006).
  • 87. A. Fratalocchi, K. Rutkowska, M. Karpierz, G. Assanto, Light induced angular steering via Floquet-Bloch band-tunnelling in one-dimensional liquid crystalline photonic lattices, Opto-Electr. Review 15, 210 (2007).
  • 88. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik 52, 555 (1929).
  • 89. G. Lenz, R. Parker, M. Wanke, C. De Sterke, Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays, Opt. Commun. 218, 87 (2003).
  • 90. G. Lenz, I. Talanina, C.M. De Sterke, Bloch oscillations in an array of curved optical waveguides, Phys. Rev. Lett. 83, 963 (1999).
  • 91. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, V. Foglietti, Observation of dynamic localization in periodically curved waveguide arrays, Phys. Rev. Lett. 96, 243901 (2006).
  • 92. R. Iyer, J.S. Aitchison, J. Wan, M.M. Dignam, C.M. de Sterke, Exact dynamic localization in curved AlGaAs optical waveguide arrays, Optics Expr. 15, 3212 (2007).
  • Bibliografia do rozdz. 5
  • 1. F. Poli, A. Cucinotta, S. Selleri, Photonic crystal fibers: properties and applications, Springer, 2007.
  • 2. J. Knight, T. Birks, P.S.J. Russell, D. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1547 (1996).
  • 3. P. Russell, Photonic crystal fibers, Science 299, 358 (2003).
  • 4. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, D. Hewak, Solid microstructured optical fiber, Optics Expr. 11, 2225 (2003).
  • 5. K. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, H. Rutt, Extruded singlemode non-silica glass holey optical fibres, Electron. Lett. 38, 546 (2002).
  • 6. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, J. Adam, Chalcogenide glass hollow core photonic crystal fibers, Optical Materials 32, 1532 (2010).
  • 7. A. Millo, L. Lobachinsky, A. Katzir, Single-mode index-guiding photonic crystal fibers for the middle infrared, IEEE Photonics Technology Letters 20, 869 (2008).
  • 8. A. Argyros, M.A. van Eijkelenborg, M.C. Large, I.M. Bassett, Hollow-core microstructured polymer optical fiber, Opt. Lett. 31, 172 (2006).
  • 9. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C.M. de Sterke, Microstructured polymer optical fibre, Optics Expr. 9, 319 (2001).
  • 10. U.A. Laudyn, K.A. Rutkowska, R.T. Rutkowski, M.A. Karpierz, T. R. Woliński, J. Wójcik, Nonlinear effects in photonic crystal fibers filled with nematic liquid crystals, Central European Journal of Physics 6, 612 (2008).
  • 11. C.R. Rosberg, F.H. Bennet, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, Y.S. Kivshar, Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers, Optics Expr. 15, 12145 (2007).
  • 12. I.L. Garanovich, S. Longhi, A.A. Sukhorukov, Y.S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Physics Reports 518, 1 (2012).
  • 13. R. Buczynski, Photonic crystal fibers, Acta Physica Polonica A 106, 141 (2004).
  • 14. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, R. Buczynski, Soft glasses for photonic crystal fibers and microstructured optical components, Optical Engineering 53, 071815 (2014).
  • 15. J. Wójcik, B. Janoszczyk, K. Poturaj, M. Makara, A. Walewski, P. Mergo, J. Klimek, K. Skorupski, L. Czyżewska, Development of silica glass microstructured optical fibers technology in Poland Proc. SPIE 6608, 660803 (2007).
  • 16. T. Woliński, S. Ertman, P. Lesiak, A. Domański, A. Czapla, R. Dąbrowski, E. Nowinowski-Kruszelnicki, J. Wójcik, Photonic liquid crystal fibers: A new challenge for fiber optics and liquid crystals photonics, Opto-Electronics Review 14, 329 (2006).
  • 17. F. Du, Y. Lu, S. Wu, Electrically tunable liquid-crystal photonic crystal fiber, Appl. Phys. Lett. 85, 2181 (2004).
  • 18. T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, Optical devices based on liquid crystal photonic bandgap fibres, Optics Expr. 11, 2589 (2003).
  • 19. A.M. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications, Journal of Sensors 2012, 598178 (2012).
  • 20. I. Khoo, Liquid Crystals, Hoboken, 2007.
  • 21. S. Mathews, G. Farrell, Y. Semenova, Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements, Appl. Opt. 50, 2628 (2011).
  • 22. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tunnermann, F. Lederer, Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica, Optics Expr. 14, 6055 (2006).
  • 23. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, A. Tunnermann, Discrete diffraction in two-dimensional arrays of coupled waveguides in silica, Opt. Lett. 29, 468 (2004).
  • 24. D. Cheskis, S. Bar-Ad, R. Morandotti, J. Aitchison, H. Eisenberg, Y. Silberberg, D. Ross, Strong spatiotemporal localization in a silica nonlinear waveguide array, Phys. Rev. Lett. 91, 223901 (2003).
  • 25. D.N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424, 817 (2003).
  • 26. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W . Fleischer, M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Review E 66, 046602 (2002).
  • 27. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, D.N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett. 90. 023902 (2003).
  • 28. H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, U. Peschel, Visual observation of Zener tunneling, Phys. Rev. Lett. 96, 023901 (2006).
  • 29. R. Iwanow, R. Schiek, G. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Observation of Discrete quadratic solitons, Phys. Rev. Lett. 93, 113902 (2004).
  • 30. K. Rutkowska, U. Laudyn, P. Jung, All-optical control of discrete light propagation in photonic liquid crystal fibers in IEEE Conference on and International Quantum Electronics Conference, 2013.
  • 31. K.A. Rutkowska, U.A. Laudyn, P.S. Jung, Tunability of discrete diffraction in photonic liquid crystal fibres, Opto-Electronics Review 22, 207 (2014).
  • 32. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Discrete solitons in optics, Physics Reports 463, 1 (2008).
  • 33. S. Somekh, E. Garmire, A. Yariv, H. Garvin, R. Hunsperger, Channel optical waveguide directional couplers, Appl. Phys. Lett 22, 46 (1973).
  • 34. H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, J. Aitchison, Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett. 81, 3383 (1998).
  • 35. D.N. Christodoulides, E.D. Eugenieva, Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays, Phys. Rev. Lett. 87, 233901 (2001).
  • 36. E.D. Eugenieva, N.K. Efremidis, D.N. Christodoulides, Design of switching junctions for two-dimensional discrete soliton networks, Opt. Lett. 26, 1978 (2001).
  • 37. W. Królikowski, U. Trutschel, C. Schmidt-Hattenberger, M. Cronin-Golomb, Solitonlike optical switching in a circular fiber array, Opt. Lett. 19, 320 (1994).
  • 38. Y. Fainman, L. Lee, D. Psaltis, C. Yang, Optofluidics: fundamentals, devices, and applications, McGraw-Hill, 2009.
  • 39. M. Vieweg, T. Gissibl, S. Pricking, B. Kuhlmey, D. Wu, B. Eggleton, H. Giessen, Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers, Optics Expr. 18, 25232 (2010).
  • 40. M. Vieweg, T. Gissibl, H. Giessen, Nonlinear optics: Photonic crystal fibers are selectively filled with nonlinear liquids, Laser Focus World 47, 53 (2011).
  • 41. M. Vieweg, T. Gissibl, Y.V. Kartashov, L. Torner, H. Giessen, Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity, Opt. Lett. 37, 2454 (2012).
  • 42. A. Witkowska, K. Lai, S. Leon-Saval, W. Wadsworth, T. Birks, All-fiber anamorphic core-shape transitions, Opt. Lett. 31, 2672 (2006).
  • 43. B.T. Kuhlmey, B.J. Eggleton, D.K. Wu, Fluid-filled solid-core photonic bandgap fibers, J. Lightwave Technol. 27, 1617 (2009).
  • 44. K. Milenko, T.R. Wolinski, D.J.J. Hu, J.L. Lim, Y. Wang, P.P. Shum, Hybrid photonic crystal fiber selectively infiltrated with liquid crystal, IEEE Photonics Global Conference, 2012.
  • 45. K. Mileńko, K. Rutkowska, T. Woliński, Numerical and experimental analysis of photonic crystal fiber selectively infiltrated with silicon oil, Acta Physica Polonica A 124, 589 (2013).
  • 46. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, C. Zhao, Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer, Optics Expr. 13, 9014 (2005).
  • 47. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T.P. Hansen, Selective filling of photonic crystal fibres, Journal of Optics A: Pure and Applied Optics 7, L13 (2005).
  • 48. T. Gissibl, M. Vieweg, M. Vogel, M.A. Ahmed, T. Graf, H. Giessen, Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes, Applied Physics B 106, 521 (2012).
  • 49. T.R. Wolinski, S. Ertman, D. Budaszewski, M. Chychlowski, A. Czapla, R. Dabrowski, A. W. Domanski, P. Mergo, E. Nowinowski -Kruszelnicki, K.A. Rutkowska, M. Sierakowski, M. Tefelska, Emerging photonic devices based on photonic liquid crystal fibers, Photonics Letters of Poland 3, 20 (2011).
  • 50. T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres, Measurement Science and Technology 17, 985 (2006).
  • 51. T.R. Wolinski, S. Ertman, D. Budaszewski, M. Chychlowski, A. Czapla, R. Dabrowski, A. W. Domanski, P. Mergo, E. Nowinowski-Kruszelnicki, K.A. Rutkowska, M. Sierakowski, M. Tefelska, Liquid crystal photonic crystal fibers and their applications, Proc. SPIE 7955, 795502 (2011).
  • 52. K. Brzdąkiewicz, U. Laudyn, M. Karpierz, T. Woliński, J. Wójcik, Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals, Opto-Electronics Review 14, 287 (2006).
  • 53. K.A. Rutkowska, K. Orzechowski, Discrete light propagation in microstructured fibers infiltrated with liquid crystals, Proc. SPIE 8697, 86971F (2012).
  • 54. J. Schirmer, P. Kohns, T. Schmidt-Kaler, A.A. Muravski, S. Y. Yakovenko, V.S. Bezborodov, R. Dabrowski, P. Adomenas, Birefringence and refractive indices dispersion of different liquid crystalline structures, Molecular Crystals and Liquid Crystals 307, 17 (1997).
  • 55. J. Li, C.-H. Wen, S. Gauza, R. Lu, S. Wu, Refractive indices of liquid crystals for display applications, Journal of Display Technology 1, 51 (2005).
  • 56. M. Chychłowski, S. Ertman, M. Tefelska, T. Woliński, E. Nowinowski- Kruszelnicki, O. Yaroshchuk, Photo-induced orientation of nematic liquid crystals in microcapillaries, Acta Physica Polonica A 118, 1100 (2010).
  • 57. O. Yaroshchuk, Y. Reznikov, Photoalignment of liquid crystals: basics and current trends, Journal of Materials Chemistry 22, 286 (2012).
  • 58. S. Ertman, A .K. Srivastava, V.G. Chigrinov, M.S. Chychłowski, T.R. Woliński, Patterned alignment of liquid crystal molecules in silica micro-capillaries, Liquid Crystals 40, 1 (2013).
  • 59. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22, 961 (1997).
  • 60. J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Photonic band gap guidance in optical fibers, Science 282, 1476 (1998).
  • 61. K. Sakoda, Optical properties of photonic crystals, Springer, 2005.
  • 62. K. Saitoh, M. Koshiba, Numerical modeling of photonic crystal fibers, Journal of Lightwave Technology 23, 3580 (2005).
  • 63. A. Majewski, Podstawy techniki światłowodowej, Oficyna Wydawnicza PW, Warszawa, 2000.
  • 64. K. Iwaszczuk, K.A. Rutkowska, Plane wave method for photonic liquid crystal fibers modeling, Proc. SPIE 7124, 712409 (2008).
  • 65. K.A. Rutkowska, R.T. Rutkowski, M.S. Chychłowski, T.R. Woliński, Analyses of light propagation in photonic liquid crystal fibers, Proc. SPIE 7120, 712003 (2008).
  • 66. M.S. Chychłowski, K.A. Rutkowska, T.R. Woliński, Guided modes in photonic liquid crystal fibers, Proc. SPIE 7120, 712002 (2008).
  • 67. K.A. Rutkowska, T.R. Woliński, Modeling of light propagation in photonic liquid crystal fibers, Photonics Letters of Poland 2, 107 (2010).
  • 68. K. Rutkowska, L. Wei, Full-vectorial description of the light guidance in anisotropic photonic liquid crystal fibers, Acta Physica Polonica A 122, 880 (2012).
  • 69. K.A. Rutkowska, U. Laudyn, P. Jung, Nonlinear discrete light propagation in photonic liquid crystal fibers, Photonics Letters of Poland 5, 17 (2013).
  • 70. J. Riishede, N.A. Mortensen, J. Lægsgaard, A ‘poor man’s approach’ to modelling micro-structured optical fibres, Journal of Optics A : Pure and Applied Optics 5, 534 (2003).
  • 71. K.A. Rutkowska, L. Wei, Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers, Photonics Letters of Poland 4, 161 (2012).
  • 72. G.D. Smith, Numerical solution of partial differential equations: finite difference methods, Claredon Press, Oxford, 1985.
  • 73. A. Taflove, S.C. Hagness, Computational electrodynamics, Artech House, 2005.
  • 74. W.H. Press, S.A. Teukolsky, W. T. Vetterling, B.P. Flannery, Numerical recipes in C, Citeseer, 1996.
  • 75. L. Kulas, M. Mrozowski, Low-reflection subgridding, IEEE Transactions on Microwave Theory and Techniques 53, 1587 (2005).
  • 76. C.D. Sarris, Adaptive mesh refinement for time-domain numerical electromagnetics, Synthesis Lectures on Computational Electromagnetics 1, 1 (2007).
  • 77. A.B. Fallahkhair, K.S. Li, T.E. Murphy, Vector finite difference modesolver for anisotropic dielectric waveguides, Journal of Lightwave Technology 26, 1423 (2008).
  • 78. Z. Zhu, T. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers, Optics Expr. 10, 853 (2002).
  • 79. M. Chen, S. Hsu, H. Chang, A finite-difference frequency-domain method for full-vectroial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor, Optics Expr. 17, 5965 (2009).
  • 80. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell 's equations in isotropic media, IEEE Trans. Antennas Propag. 14, 302 (1966).
  • 81. S. Guo, F. Wu, S. Albin, R. Rogowski, Photonic band gap analysis using finite-difference frequency-domain method, Optics Expr. 12, 1741 (2004).
  • 82. C. Yu, H. Chang, Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals, Optics Expr. 12, 1397 (2004).
  • 83. C. Yu, H. Chang, Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers, Optics Expr. 12, 6165 (2004).
  • 84. T. Woliński, K. Mileńko, M. Tefelska, K. Rutkowska, A. Domański, S. Ertman, K. Orzechowski, M. Sierakowski, O. Chojnowska, R. Dąbrowski, Liquid Crystals and Polymer-Based Photonic Crystal Fibers, Molecular Crystals and Liquid Crystals 594, 55 (2014).
  • 85. T. Wolinski, M. Tefelska, K. Milenko, K. Rutkowska, A. Domanski, S. Ertman, K. Orzechowski, M. Sierakowski, E. Nowinowski-Kruszelnicki, R. Dabrowski, Propagation effects in a polymer-based photonic liquid crystal fiber, Applied Physics A 115, 569 (2014).
  • 86. K.A. Rutkowska, U.A. Laudyn, R.T. Rutkowski, M.A. Karpierz, T.R. Wolinski, J. Wójcik, Nonlinear light propagation in photonic crystal fibers filled with nematic liquid crystals, Proc. SPIE 6582, 658215 (2007).
  • 87. C. De Francisco, B. Borges, M. Romero, A semivectorial method for the modeling of photonic crystal fibers, Microwave Opt. Technol. Lett. 38, 418 (2003).
  • 88. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, S. Trillo, Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers, Optics Expr. 10, 54 (2002).
  • 89. S. Obayya, Full-Vectorial Beam Propagation Methods in Computational Photonics, John Wiley and Sons, 2010.
  • 90. S. Obayya, B. Rahman, H. El-Mikati, New full-vectorial numerically efficient propagation algorithm based on the finite element method, Journal of Lightwave Technology 18,409 (2000).
  • 91. K. Saitoh, M. Koshiba, Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides, Journal of Lightwave Technology 19, 405 (2001).
  • 92. K. Saitoh, M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers, IEEE Journal of Quantum Electronics 38, 927 (2002).
  • 93. F.A. Sala, M.A. Karpierz, Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields, Journal of the Optical Society of America B 29, 1465 (2012).
  • 94. F.A. Sala, M.A. Karpierz;,Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals, Optics Expr. 20, 13923 (2012).
  • 95. P. Jung, M.A. Karpierz, Beam propagation method in rectangular structures with a high step index, Opt. Commun. 285, 4184 (2012).
  • 96. P. Jung, M.A. Karpierz, Analysis of light propagation in optical fibers with a high step index, Acta Physica Polonica A, 122, 829 (2012).
  • 97. K.A. Rutkowska, U.A. Laudyn, P.S. Jung, Discrete light propagation in photonic liquid crystal fibers, IEEE Photonics Global Conference, 2012.
  • 98. B. Bahadur, R. Sarna, V. Bhide, Refractive indices, density and order parameter of same technologically important liquid crystalline mixtures, Molecular Crystals and Liquid Crystals 72, 139 (1982).
  • 99. A. Singh, R. Manohar, J. Shukla, A. Biradar, Refractive indices, order parameter and optical transmittance studies of a nematic liquid crystal mixture, Acta Physica Polonica A 110, 485 (2006).
  • 100. I. Khoo, Extreme nonlinear optics of nematic liquid crystals, Journal of the Optical Society of America B 28, A45 (2011).
  • 101. F. Chen, C. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, M. Segev, Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays, Optics Expr. 13, 4314 (2005).
  • 102. D. Mandelik, R. Morandotti, J. Aitchison, Y. Silberberg, Gap solitons in waveguide arrays, Phys. Rev. Lett. 92, 093904 (2004).
  • 103. M. Murek, K.A. Rutkowska, Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials, Photonics Letters of Poland 6, 74 (2014) .
  • 104.T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, F. Lederer, Nonlinearity and disorder in fiber arrays, Phys. Rev. Lett. 93, 053901 (2004) .
  • 105. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Disorder-induced soliton transmission in nonlinear photonic lattices, Opt. Lett. 36, 466 (2011).
Uwagi
PL
Bibliografia dołaczona do rozdziału.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08e00667-8714-494e-88f2-0d94c186f914
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.