PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Progress of microscopic interaction between fine particles in coal slurry water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction between fine particles is widespread in nature and plays a crucial role in regulating various interfaces for minerals. In coal preparation wastewater treatment, the intricate mechanism of interaction between multi-component fine particles in coal slurry water (denoted as CSW) is a fundamental aspect in addressing the challenges of coal slurry water agglomeration, selective separation, and difficult dewatering. This paper presents a summary of the necessity, current research status, and progress in studying the microscopic interaction between mineral particles in CSW systems. It overviews theoretical calculation formulas for particle-particle interaction, factors that influence such interaction, and modern analysis techniques for studying microscopic particle interaction. These findings enhance and refine relevant theories, establish a theoretical foundation, and offer technical support for stabilizing and optimizing the performance of CSW systems. Additionally, it elucidates the mechanism of particle-particle interaction in CSW, which is of significant importance in achieving efficient separation of CSW.
Rocznik
Strony
art. no. 189117
Opis fizyczny
Bibliogr. 132 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • AHMED, M.M., 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. Int. J. Miner. Process., 94(3-4), 180-191.
  • AKKERMANS, R.L.C., SPENLEY, N.A., ROBERTSON, S.H., 2013. Monte Carlo methods in Materials Studio. Mol. Simul., 39(14-15), 1153-1164.
  • ALGHUNAIM A., KIRDPONPATTARA S., NEWBY B. Z., 2016. Techniques for determining contact angle and wettability of powders. Powder Technol., 287, 201-215.
  • ALVIM, R.D.S., MIRANDA, C.R., 2016. Noncontact AFM first-principles simulations of functionalized silicon tips on the montmorillonite (001) surface. J. Phys. Chem. C., 120, 13503-13513.
  • BABEL, B., RUDOLPH, M., 2018. Characterizing mineral wettabilities on a microscale by colloidal probe atomic force microscopy. Miner. Eng., 121, 212-219.
  • BANDINI, P., PRESTIDGE, C.A., RALSTON, J., 2001. Colloidal iron oxide slime coatings and galena particle flotation. Miner. Eng., 14(5), 487-497.
  • BERGSTRÖM, L., 1997. Hamaker constants of inorganic materials. Adv. Colloid Interface Sci., 70, 125-169.
  • BOURNIVAL, G., ATA, S., 2021. The impact of water salinity and its interaction with flotation reagents on the quality of coal flotation products. J. Cleaner Prod., 328, 129519.
  • BOURNIVAL, G., MUIN, S.R., LAMBERT, N., ATA, S., 2017. Characterisation of frother properties in coal preparation process water. Miner. Eng., 110, 47-56.
  • BU, X.Z., TONG, Z, SUN, Y.J., XIE, G.Y., DONG, X.S., 2023. Research progress on the impact of mineral surface roughness on particle-bubble interaction (in Chinese). J. China Coal Soc., 48(11), 4171-4182.
  • BUTT, H., CAPPELLA, B., KAPPL, M., 2005. Force measurements with the atomic force microscope, Technique, interpretation and applications. Surf. Sci. Rep., 59(1), 1-152.
  • BUTT, H., 1991. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J., 60(6), 1438-1444.
  • CHANG, Q., 2020. Discussion on the characteristics and influence factors of hydrophobic force. Acta Sci. Circumstantiae., 40(11), 3811-3820.
  • CHEN, J., CHU, X.X., GE, W., SUN, Y., LING, Y.J., MIN, F.F., 2022. Synergetic adsorption of dodecane and dodecylamine on oxidized coal, Insights from molecular dynamics simulation. Appl. Surf. Sci., 592, 153103.
  • CHEN, J., MIN F.F., LIU, L.Y., PENG, C.L., LU, F.Q., 2016. Hydrophobic aggregation of fine particles in high muddied coal slurry water. Water sci technol., 73(3), 501-510.
  • CHEN, J., MIN, F.F., LIU, L.Y., PENG, C.L., SUN, Y.L., DU, J., 2014. Study on hydrophobic aggreation settlement of high muddied coal slurry water (in Chinese). J. China Coal Soc., 39(12), 2507-25122.
  • CHEN, J., MIN, F.F., LIU, L.Y., YAO, K.L., 2019. Molecular dynamics simulation on interactions between fine particles of coal and kaolinite (in Chinese). J. China Coal Soc., 44(06), 1867-1875.
  • CHEN, J., MIN, F.F, LIU, L.Y., 2019. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl. Surf. Sci., 467-468, 12-21.
  • CHEN, J., MIN, F.F., WANG, H., 2014. Research status and progress on hydrophobic aggregation of the fine particles mineral, a review (in Chinese). Kuangwu Xuebao, 34(2), 181-188.
  • CHEN, L., CHEN, S.J., TAO, X.X., YANG, Z., LI, L.L., FAN, H.D., 2018. Effects of electrolytes on the mineralization process in oily-bubble floation of low rank coal (in Chinese). J. China Coal Soc., 43(05), 1432-1439.
  • CHEN, R.X., FAN, Y.P., DONG, X.S., MA, X.M., FENG, Z.Y., CHANG, M., LI, N., 2021. Impact of Ph on interaction between the polymeric flocculant and ultrafine coal with atomic force microscopy (AFM). Colloids Surf., A., 622, 126698.
  • CHENG, W.L., DENG, Z.B., LIU, Z.H., TONG, X., 2020. Research Progress in Interaction force between mineral particles in coal slurry flotation (in Chinese). Multipurp. Util. Miner. Resour., (03), 48-55.
  • CHENG, W.L., ZHANG, X.M., DENG, Z.B., GUO, D. 2020. Interaction between slime particles affected by flotation reagents based on EDLVO theory (in Chinese). J. China Coal Soc., 45(10), 3563-3572.
  • CHURAEV, N.V., DERJAGUIN, B.V., 1985. Inclusion of structural forces in the theory of stability of colloids and films. J. Colloid Interface Sci., 103(2), 542-553.
  • CUI, C.Z, WEI, Z.J., WU, Z.Y., YANG, Y., HUANG, Y.S., LÜ, G.Z., CAO, G., 2020. Effect of low-salinity waterflooding on rock wettability based on DLVO theory (in Chinese). J. China Univ. Pet. Ed. Nat. Sci., 44(01), 106-114.
  • DUCKER, W., SENDEN, T., PASHLEY, R., 1991. Direct measurement of colloidal forces using an atomic force microscope. Nature., 353, 239-241.
  • FAURE, B., SALAZAR-ALVAREZ, G., BERGSTRÖM, L., 2011. Hamaker constants of iron oxide nanoparticles. Langmuir., 27, 8659-8664.
  • FENG, L., LIU, J.T., ZHANG, M.Q., SONG, L.L., 2010. Analysis on influencing factors od sedimentation characteristics of coal slime water (in Chinese). J. China Univ. Min. Technol., 39(05), 671-675.
  • GUI, X.H., XING, Y.W., LI, C.W., XIA, L.Y., YANG, Z.L., WANG, Y.W., XU, M.D., WANG, D.Y., XU, X.H., 2016. Clay coating and its behavior regulation in fine coal flotation (in Chinese). Coal Sci. Technol., 44(06), 175-181.
  • GUI, X.H., XING, Y.W., RONG, G.Q., CAO, Y.J., LIU, J.T., 2016. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technol., 301, 349-355.
  • HAN, Y.H., LIU, W.L., CHEN, J.H., 2016. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces. Appl. Surf. Sci., 370, 403-409.
  • HARVEY, P.A., NGUYEN, A.V, EVANS, G.M., 2002. Influence of Electrical Double-Layer Interaction on Coal Flotation. J. Colloid Interface Sci., 250(2), 337-343.
  • HU, P.F., LIANG, L., LI, B., XIA, W.C., 2019. Heterocoagulation between coal and quartz particles studied by the mineral heterocoagulation quantifying system. Miner. Eng., 138, 7-13.
  • HU, P.F., LIANG, L., 2020. The role of hydrophobic interaction in the heterocoagulation between coal and quartz particles. Miner. Eng., 154, 106421.
  • ISRAELACHVILI, J., MIN, Y., AKBULUT, M., ALIG, A., CARVER, G., GREENE, W., KRISTIANSEN, K., MEYER, E., PESIKA, N., ROSENBERG, K., ZENG, H., 2010. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys., 73(3), 036601.
  • ISRAELACHVILI, J.N., ADAMS, G.E., 1978. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J. Chem. Soc., Faraday Trans. 1., 74, 975-1001.
  • ISRAELACHVILI, J.N., MC GUIGGAN, P.M., 1988. Forces between surfaces in liquids. Sci., 241, 795-800.
  • ISRAELACHVILI, J.N., 2011. Intermolecular and Surface Forces. (3rd ed.), Academic Press.
  • JAMES, Q.F., DAN, A.H., 2003. Relative Importance of Electrostatic Forces on Powder Particles. Powder Technol., 135-136(1), 65-75.
  • ISRAELACHVILI, J., WENNERSTRÖM, H., 1996. Role of hydration and water structure in biological and colloidal interactions. Nat., 379(6562), 219-225.
  • KANG, X., ZOU, X., SUN, H.M., MA, X.Y., CHEN, R.P., 2022. Molecular dynamics simulations of microstructure and dynamic shearing behaviors of kaolinite-water-salt system. Appl. Clay Sci., 218, 106414.
  • KOROLEV, V.A., NESTEROV, D.S., 2018. Regulation of clay particles charge for design of protective electrokinetic barriers. J. Hazard. Mater., 358, 165-170.
  • KWOK, W. M., SHIMOTAKE, J.E., LIS, L.J., 1986. Effect of Ion Species on Interactive Forces Between Phosphatidylcholine Bilayers. Mol. Cryst. Liq. Cryst., 132(1-2), 181-188.
  • KOURKI, H., FAMILI, M.H.N., 2012. Particle sedimentation, effect of polymer concentration on particle–particle interaction. Powder Technol., 221, 137-143.
  • KRUSZELNICKI, M., POLOWCZYK, I., KOWALCZUK, P.B., 2024. Insight into the influence of surface wettability on flotation properties of solid particles - Critical contact angle in flotation. Powder Technol., 431, 119056.
  • KUMAR, N., ZHAO, C., KLAASSEN, A., ENDE, D.V.D., 2016. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy. Geochim. Cosmochim. Acta., 175, 100-112.
  • KUMAR, S., RAY, D., ABBAS, S., SAHA, D., ASWAL, V.K., KOHLBRECHER, J., 2019. Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering. Curr. Opin. Colloid Interface Sci., 42, 17-32.
  • LI, G.S., DENG, L.J., CAO, Y.J., RAN, J.C., 2016. Effect of NaCl on coalflotation and its mechanism (in Chinese). J. China Univ. Min. Technol., 45(05), 1038-1042.
  • LI, Q., LIAO, C.L., HOU, J., WANG, W.J., ZHANG, J.S., 2022. A mathematic model based on Edlvo and Lifshitz theory calculating interparticle interactions in coal water slurry. Fuel., 316, 123271.
  • LI, Q., WANG, Q., HOU, J., ZHANG, J.S., 2023. Zhang, Y., Aggregating structure in coal water slurry studied by Edlvo theory and fractal dimension. Front. Energy., 17, 306-316.
  • LI, Y.G., HONAKER, R., CHEN, J.Z., SHEN, L.J., 2016. Effect of particle size on the reverse flotation of subbituminous coal. Powder Technol., 301, 323-330.
  • LI, H. PENG, X.H. WU, L.S., JIA, M.Y., ZHU, H.L., 2009. Surface potential dependence of the Hamaker constant. J. Phys. Chem. C., 113, 4419-4425.
  • LIN, Z., YANG, C., SHEN, Z.Y., QI, X., 2010. The properties and sedimentation characteristics of extremely sliming coal slime water (in Chinese). J. China Coal Soc., 35(2), 312-315.
  • LING, Y.J., CHEN, J., MIN, F.F., CHENG, Y.L., CHU, X.X., SHANG, H.H., WANG, T.Y., 2023. Influence mechanism of Fe(II/III) doping on the adsorption of methylamine salts on kaolinite surfaces elucidated through DFT calculations. J. Mol. Liq., 390(B), 123082.
  • LIU, A., FAN, J.C., FAN, M.Q., 2015. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (001) surface in the aqueous solution. Int. J. Miner. Process., 134, 1-10.
  • LIU, C.M., FENG, A.S., GUO, Z.X., CAO, X.F., HU, Y.H., 2011. Flotation behavior of four dodecyl tertiary amines as collectors of diaspore and kaolinite. Min. Sci. Technol., 21(02), 249-253.
  • LIU, D., EDRAKI, M., BERRY, L., 2018. Investigating the settling behaviour of saline tailing suspensions using kaolinite, bentonite, and illite clay minerals. Powder Technol., 326, 228-236.
  • LIU, L.Y., MIN, F.F., ZHANG, M.Q., ZHAO, Q., 2012. Sliming characteristics of different density raw coal (in Chinese). J. China Coal Soc., 37(S1), 182-186.
  • LIU, L.Y., 2013. Study on the hydration of coal-measured kaolinite surfaces in aqueous solutions (in Chinese). Huainan, Anhui Univ. Sci. Technol.
  • LIU, Y., SONG, C.L., LV, G., CHEN, N., ZHOU, H., JING, X.J., 2018. Determination of the attractive force, adhesive force, adhesion energy and Hamaker constant of soot particles generated from a premixed methane/oxygen flame by AFM. Appl. Surf. Sci., 433, 450-457.
  • LUO, X.M., SUN, C.Y., YIN, W.Z., 2011. Current application status of atomic force microscopes in mineral processing field (in Chinese). Min. Process Equip., 39(12), 80-85.
  • MA, Y., LU, G., SHAO, C., LI, X.F., 2019. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (0 0 1) surface. Fuel., 237, 989-1002.
  • MARČELJA, S., RADIĆ, N., 1976. Repulsion of interfaces due to boundary water. Chemical Physics Letters., 42(1), 129-130.
  • MEYER, E., 1992. Atomic force microscopy. Prog. Surf. Sci., 41(1), 3-49.
  • MIN, F.F., CHEN. J., PENG, C.L., CHEN, C., 2018. Promotion of coal slime water sedimentation and filtration via hydrophobic coagulation. Int. J. Coal Prep. Util., 41, 815-829.
  • MIN, F.F., REN, B., CHEN, J., LIU, C.F., PENG, C.L., 2020. Mechanism and experimental study on promoting coal slime dewatering based on weakening of hydration layer (in Chinese). J. China Coal Soc., 45(01), 368-376.
  • MUKHERJEE, A., PISUPATI, S.V., 2015. Interparticle interactions in highly concentrated coal-water slurries and their effect on slurry viscosity. Energy Fuels., 29 (6), 3675-3683.
  • OATS, W.J., OZDEMIR, O., NGUYEN, A.V., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng., 23(5), 413-419.
  • OSS, C.J., ABSOLOM, D.R., NEUMANN, A.W., 1980. The “hydrophobic effect”, Essentially a van der Waals interaction. Colloid Polym. Sci., 258(4), 424-427.
  • PASHLEY, R.M., ISRAELACHVILI. J.N., 1984. Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. 101(2), 511-523.
  • PENG, C.S., SONG, S.X., FOET, T., 2016. Study of hydration layers near a hydrophilic surface in water through AFM imaging. Surf. Interface Anal., 38(5), 975-980.
  • PREUSS, M., BUTT, H., 1999. Direct measurement of forces between particles and bubbles. Int. J. Miner. Process., 56(1-4), 99-115.
  • QI, Z., RUAN, R.M., JIA, Y., LI, L., 2016. Effect of backfill on gold-bearing mineral flotation by AFM (in Chinese). J. Cent. South Univ. (Sci. Technol.)., 47(8), 2543-2549.
  • QIAN, Y.P., QIU, X., CHEN, B., HU, S.H., QIN, X.K., 2018. Effect of (PEO-PPO-PEO) triblock copolymer on enhanced dispersion effect between fine fluorite and quartz (in Chinese). Met. Mine., (05), 113-116.
  • QIU, S., QIU, T.S., YAN, H.S., LONG, Q.B., WU, H., LI, X.B., ZHU, D.M., 2022. Investigation of protonation and deprotonation processes of kaolinite and its effect on the adsorption stability of rare earth elements. Colloids Surf., A., 642, 128596.
  • RINGL, C., URBASSEK, H.M., 2012. A LAMMPS implementation of granular mechanics, Inclusion of adhesive and microscopic friction forces. Comput. Phys. Commun., 183(4), 986-992.
  • SABAH, E., ERKAN, Z.E., 2006. Interaction mechanism of flocculants with coal waste slurry. Fuel., 85(3), 350-359.
  • SCHIBY, D., RUCKENSTEIN, E., 1983. The role of the polarization layers in hydration forces. Chem. Phys. Lett., 95(4-5), 435-438.
  • SHI, K.Y., CHEN, J.Q., PANG, X.Q., JIANG, F.J., HUI, S.S., ZHAO, Z.C., CHEN, D., CONG, Q., WANG, T., XIAO, H.Y., YANG, X.B., WANG, Y.Y., 2023. Wettability of different clay mineral surfaces in shale, Implications from molecular dynamics simulations. Pet. Sci., 20(2), 689-704.
  • SHI, Z.P., RAN, B., LIU, L.Y., 2022. Determining the interaction energy of a quartz-kaolinite system at different pH levels by atomic force microscopy and extended DLVO theory. Powder Technol., 409, 117842.
  • SILVA, L.A., GARROT, T.G., PEREIRA, A.M., CORREIA, J.C.G., 2021. Historical perspective and bibliometric analysis of molecular modeling applied in mineral flotation systems. Miner. Eng., 170, 107062.
  • SUN, H.M., YANG, W., CHEN, R.P., KANG, X., 2021. Microfabric characteristics of kaolinite flocculates and aggregates - Insights from large-scale molecular dynamics simulations. Appl. Clay Sci., 206, 106073.
  • SUN, H.F., 2013. The application analysis of DLVO theory in slime water flocculation mechanism (in Chinese). Coal Prep. Technol., No.236(01), 39-41.
  • SUN, X.P., LIU, W.L., ZHUO, Q.M., WANG, P.H., ZHAO, J.F., 2023. Probing the interaction between coal particle and collector using atomic force microscope and density functional theory calculation. Colloids Surf., A., 660, 130916.
  • SUN, Y.J., BU, X.N., ULUSOY, U., GUVEN, O., HASSAS, B.V., DONG, X.S., 2023. Effect of surface roughness on particle-bubble interaction, A critical review. Miner. Eng., 201, 108223.
  • THOMPSON, A.P., AKTULGA, H.M., BERGER, R., BOLINTINEANU, D.S., BROWN, W.M., CROZIER, P.S., IN 'T VELD, P.J., KOHLMEYER, A., MOORE, S.G., NGUYEN, T.D., SHAN, R., STEVENS, M.J., TRANCHIDA, J., TROTT, C., PLIMPTON, S.J., 2022. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun., 271, 108171.
  • TOFIGHI, M., RAHNEMAIE, R., 2023. A new surface structural approach for modeling the charging behavior of kaolinite. Chem. Geol., 638, 121691.
  • ULUSOY, U., YEKELER, M., 2005. Correlation of the surface roughness of some industrial minerals with their wettability parameters. Chem. Eng. Process., 44(5), 555-563.
  • WANG, J., XIA, S.W., YU, L.M., 2015. Adsorption of Pb(II) on the kaolinite(001) surface in aqueous system, A DFT approach. Appl. Surf. Sci., 339, 28-35.
  • WANG, X.C., ZHANG, Q., 2020. Insight into the influence of surface roughness on the wettability of apatite and dolomite. Miner., 10(2), 114.
  • WANG Z, LU Q, WANG J, LIU J, LIU G, SUN W, XIE L, LIU Q, ZENG H. Nanomechanical insights into hydrophobic interactions of mineral surfaces in interfacial adsorption, aggregation and flotation processes. Chem. Eng. J. 2023, 455, 104642.
  • WEBER, C., KAUFHOLD, S., 2021. Hamaker functions for kaolinite and montmorillonite. Colloid Interface Sci. Commun., 43, 100442.
  • WEBER, C., KNÜPFER, P., BUCHMANN, M., RUDOLPH, M., PEUKER, U.A., 2021. A comparison between approaches for the calculation of van der Waals interactions in flotation systems. Miner. Eng., 167, 106804.
  • WEI, P.C., XIONG, Y., ZHENG, Y.Y., ZAOUI, A., YIN, Z.Y., NIU, W.W., 2023. Nanoscale friction at the quartzquartz/kaolinite interface. Colloids Surf., A., 676(B), 132296.
  • WEN, Y.H., ZHU, R.Z., ZHOU, F.X., WANG, C.Y., 2003. An overview on molecular dynamics simulation (in Chinese). Adv. Mech., (01), 65-73.
  • XING, Y.W., GUI, X.H., CAO, Y.J., LIU, J.T., 2019. Advance in the interaction force between bubble and particle and the thinning dynamics of thin liquid film (in Chinese). J. China Coal Soc., 44(10), 3185-3192.
  • XING, Y.W., GUI, X.H., CAO, Y.J., 2016. Effect of calcium ion on coal flotation in the presence of kaolinite clay. Energy Fuels., 30(2).
  • XING, Y.W., GUI, X.H., PAN, L., PINCHASIK, B.E., CAO, Y.J., LIU, J.T., KAPPL, M., BUTT, H.J., 2017. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv. Colloid Interface Sci., 246, 105-132.
  • XING, Y.W., XU, M.D., GUI, X.H., CAO, Y.J., BABEL, B., RUDOLPH, M., WEBER, S., KAPPL, M., BUTT, H.J., 2018. The application of atomic force microscopy in mineral flotation. Adv. Colloid Interface Sci., 256, 373-392.
  • XU, Z.H., LIU, J.J., CHOUNG, J.W., ZHOU, Z., 2003. Electrokinetic study of clay interactions with coal in flotation. Int. J. Miner. Process., 68(1-4), 183-196.
  • YAN, X.H., WEI, L.B., MENG, Q., WANG, J., YANG, Q., ZHAI, S.H., LU, J., 2021. A study on the mechanism of calcium ion in promoting the sedimentation of illite particles. J. Water Process. Eng., 42, 102153.
  • YAO, J., YIN, W., GONG, E., 2016. Depressing effect of fine hydrophilic particles on magnesite reverse flotation. Int. J. Miner. Process., 149, 84-93.
  • YEKELER, M., ULUSOY, U., HIÇYILMAZ, C., 2004. Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability. Powder Technol., 140(1-2), 68-78.
  • YIN, X., MILLER, J.D., 2012. Wettability of kaolinite basal planes based on surface force measurements using atomic force microscopy. Min. Metall. Explor., 29, 13-19.
  • YOTSUMOTO, H., YOON, R.H., 1993. Application of Extended DLVO Theory, I. Stability of Rutile Suspensions. J. Colloid Interface Sci., 157(2), 426-433.
  • YOU, C.F., ZHAO, H.L., HUANG, B., QI, H.Y., XU, X.C., 2008. Interactions between fine combustion droplets. Powder Technol., 185(3), 267-273.
  • YU, Y.X., CHENG, G., MA, L.Q., HUANG, G., WU, L., XU, H.X., 2017. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol., 313, 122-128.
  • YU, Y.X., MA, L.Q., XU, H.X., SUN, X.F., ZHANG, Z.J., YE, G.C., 2018. DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Powder Technol., 330, 147-151.
  • YUKSELEN, Y., KAYA, A., 2003. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water, Air, Soil Pollut., 145, 155–168.
  • ZHANG, G.F., WANG, L., FENG, Q.M., OU, L.M., LU, Y.P., 2010. Influence factors for interparticle interaction between titanaugite and ilmenite (in Chinese). Chin. J. of Nonferrous Met., 20(02), 339-345.
  • ZHANG, M.Q., LIU, J.T., WANG, Y.T., 2008. Effects of water hardness on the dispersion of fine coal and kaolinite in coal slurry (in Chinese). J. China Coal Soc., (09), 1058-1062.
  • ZHANG, M.Q., LIU, J.T., LI, X.B., 2004. Adsorption properties and mechanism of calcium ions on clay particle surface in coal slurry (in Chinese). J. China Univ. Min. Technol., (05), 547-551.
  • ZHANG, M.Q., LIU, J.T., SHAN A.Q., LIU, H.C., 2005. Calcium ions adsorption mechanism on clay particles surface in coal slurry (in Chinese). J. China Coal Soc., (05), 637-641.
  • ZHANG, M.Q., LIU, J.T., WANG, Y.T., 2008. Effects of water hardness on the dispersion of fine coal and kaolinite in coal slurry (in Chinese). J. China Coal Soc., (09), 1058-1062.
  • ZHANG, M.Q., LIU, Q., LIU, J.T., 2012. Extended DLVO theory applied to coal slime-water suspensions. J. Cent. South Univ., 19, 3558-3563.
  • ZHANG, N.N., PANGA, T., HAN, R., CHEN, S.J., LI, Z., YU, Y.X., SHI, Z.Y., LIU, L.J., QU, J.Z., ZHOU, A., 2022. Interactions between bubble and particles of key minerals of diasporic bauxite through the extended DLVO theory. Int. J. Min. Sci. Technol., 32(1), 201-214.
  • ZHANG, N.N., ZHOU, C.C., LIU, C., PAN, J.H., TANG, M.C., CAO, S.S., OUYANG, C.H, PENG, C.B., 2017. Effects of particle size on flotation parameters in the separation of diaspore and kaolinite. Powder Technol., 317, 253-263.
  • ZHANG, T.T., BAI, H.Y., ZHAO, Y.L., REN, B., WEN, T., CHEN, L.C., SONG, S.X., KOMARNENI, S., 2022. Precise cation recognition in two-dimensional nanofluidic channels of clay membranes imparted from intrinsic selectivity of clays. ACS Nano, 16, 4930-4939.
  • ZHANG, Y.Y., CHEN, M., DENG, Y., JIN, Y., LU, Y.H., XIA, Y., 2018. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites (in Chinese). J. Chin. Ceram. Soc., 46(10), 1489-1498.
  • ZHANG, Y., HU, S.X., YANG, X., JIANG, F.H., WU, C.N., LI, J.G., LIU, K., 2021. Performance and mechanism of polyacrylamide stabilizers in coal water slurry. Colloids Surf., A., 630, 127544.
  • ZHANG, Z.J., LIU, J.T., FENG, L., WANG, Y.T., ZHANG, M.Q., 2014. Calculation ofcritical hardness of coal slime water system based on DLVO theory (in Chinese). J. China Univ. Min. Technol., 43(01), 120-125.
  • ZHANG, Z.J., LIU, J.T., ZOU, W.J., FENG, L., WANG, Y.T., 2011. Effect of water hardness on coal flotation (in Chinese). J. China Univ. Min. Technol., 40(04), 612-615.
  • ZHAO, H.L., YOU, C.F., HUANG, B., QI, H.Y., XU, X.C., 2006. The interactions between submicron combustion particles. J. Eng. Thermophys., (06), 1063-1065.
  • ZHAO, H.L., YOU, C.F., QI, H.Y., XU, X.C., 2008. Mechanism of interactions between fine particles. J. Eng. Thermophys., (01), 78-80.
  • ZHAO, L., LIU, D.D., LIN, J.C., CHEN, L.G., CHEN, S.Y., WANG, G.C., 2023. Estimation of turbulent dissipation rates and its implications for the particle-bubble interactions in flotation. Miner. Eng., 201, 108230.
  • ZHAO, T.X., XU, S., HAO, F., 2023. Differential adsorption of clay minerals, Implications for organic matter enrichment. Earth-Science Reviews., 246, 104598.
  • ZHOU, C.Y., LIU, L.L., CHEN, J., MIN, F.F., LU, F.Q., 2022. Study on the influence of particle size on the flotation separation of kaolinite and quartz. Powder Technol., 408, 117747.
  • ZHU, K.Y., ZHAO, S.Y., YANG, B., KANG, J., 2008. Research on preparation of ultraclean coal by floatation with MJ complex reagent (in Chinese). Shanxi Chem. Ind., (02), 44-46.
  • ZHU, X.Y., ZHU, Z.C., LEI, X.R., YAN, C.J., 2016. Defects in structure as the sources of the surface charges of kaolinite. Appl. Clay Sci., 124-125, 127-136.
  • ZHU, Z.L., YIN, W.Z., WANG, D.H., SUN, H.R., CHEN, K.Q., YANG, B., 2020. The role of surface roughness in the wettability and floatability of quartz particles. Appl. Surf. Sci., 527, 146799.
  • ZOU, W.J., CAO, Y.J., SUN, C.B., ZHANG, Z.J., 2016. Mechanism of action of polyacrylamide in selective flocculation of fine coal (in Chinese). Chin. J. Eng., 38(3), 299-305.
  • ZOU, W.J., CAO, Y.J., SUN, C.B., ZHANG, Z.J., 2015. Particles interaction in selective flocculation flotation of fine coal (in Chinese). J. China Univ. Min. Technol., 44(06), 1061-1067.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08dfe181-4874-4ac8-a985-61723399997d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.