PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and optimization of wear parameters of Al 4032 reinforced with coal ash using Taguchi and RSM approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie i optymalizacja parametrów zużycia Al 4032 zbrojonego popiołem węglowym z zastosowaniem metod Taguchi i RSM
Języki publikacji
EN
Abstrakty
EN
The present study aimed to analyze the wear behaviour of composites synthesized by reinforcing Al 4032 with 2, 4, 6 wt.% of coal ash using the stir casting technique. Wear testing was performed on the composites at room temperature in the absence of lubrication using a pin-on-disc tribometer considering the process parameters as wt.% of reinforcement, speed and load. Micro structural characterization using scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX) was performed on the cast composites to ascertain the existence of the reinforcement along with its distribution in the prepared composites. The Taguchi L16 orthogonal array was utilized to design experiments to study the significance of the process parameters on the wear rate. A mathematical model was developed for the wear rate using response surface methodology (RSM). 6 wt.% reinforcement, at the speed of 100 rpm and 10 N load were the obtained optimized parameters for the minimum wear rate. Surface plots as well as contour plots were analyzed to understand the consequence of the process parameters on the wear rate. The analysis of variance (ANOVA) revealed that speed with 76.10 % was the most prominent parameter followed by load and reinforcement with 11.23 and 9.42% respectively.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Research Scholar, Department of Mechanical Engineering, JNTUK, Kakinada, Andhra Pradesh, India
  • Department of Mechanical Engineering, Pragati Engineering College, Surampalem, Andhra Pradesh, India
  • Department of Mechanical Engineering, University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India
  • Department of Mechanical Engineering, Pragati Engineering College, Surampalem, Andhra Pradesh, India
Bibliografia
  • [1] Katrenipadu S.P., Gurugubelli S.N., Regression modelling on wear behaviour of nano fly ash-aluminium alloy matrix composites, Emerging Materials Research 2019, 8(3), 418-425.
  • [2] Gudimetla A., Sambhu Prasad S., Lingaraju D., Tribological studies of aluminium metal matrix composites with micro reinforcements of silicon and silicon balloons, MaterialsToday: Proceedings 2019, 18, 1, 47-56.
  • [3] Doychak J., Metal-and intermetallic-matrix composites for aerospace propulsion and power systems, JOM 1992, 44(6), 46-51.
  • [4] Trumper R.L., Metal matrix composites: applications and prospects, Metals and Materials 1987, 3(11), 662-667.
  • [5] Geiger A.L., Walker J.A., The processing and properties of discontinuously reinforced aluminum composites, JOM 1991, 43.
  • [6] Lingaraju D., Ramji K., Devi M.P., Lakshmi U.R., Mechanical and tribological studies of polymer hybrid nanocomposites with nano reinforcements, Bulletin of Materials Science 2011, 34(4), 705.
  • [7] Kumar S., Balasubramanian V., Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites, Wear 2008, 264(11-12), 1026-1034.
  • [8] Rengasamy N.V., Rajkumar M., Senthil Kumaran S., Mining environment applications on Al 4032-ZrB2 and TiB2 in-situ composites, Journal of Alloys and Compounds 2016, 658, 757-773.
  • [9] Mahendra K.V., Radhakrishna K., Castable composites and their application in automobiles, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering 2007, 221(1), 135-140.
  • [10] Sannino A.P., Rack H.J., Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear 1995, 189(1-2), 1-19.
  • [11] Rohatgi P.K., Weiss D., Gupta N., Applications of fly ash in synthesizing low-cost MMCs for automotive and other applications, JOM 2006, 58(11), 71-76.
  • [12] Ma T., Yamaura H., Koss D.A., Voigt R.C., Dry sliding wear behavior of cast SiC-reinforced Al MMCs, Materials Science and Engineering: A 2003, 360(1-2), 116-125.
  • [13] Bauri R., Surappa M.K., Sliding wear behavior of Al-Li-SiCp composites, Wear 2008, 265(11-12), 1756-1766.
  • [14] Jha N., Badkul A., Mondal D.P., Das S., Singh M., Sliding wear behaviour of aluminum syntactic foam: A comparison with Al-10 wt.% SiC composites, Tribology International 2011, 44(3), 220-231.
  • [15] Tyagi R., Synthesis and tribological characterization of in situ cast Al-TiC composites, Wear 2005, 59(1-6), 569-576.
  • [16] Kumar S., Subramanya Sarma V., Murty B.S., Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al-4Cu alloy, Materials Science and Engineering: A 2007, 465(1-2), 160-164.
  • [17] Mandal A., Murty B.S., Chakraborty M., Wear behaviour of near eutectic Al-Si alloy reinforced with in-situ TiB2 particles, Materials Science and Engineering: A 2009, 506(1-2), 27-33.
  • [18] Prasad D.S., Chintada S., Hybrid composites – a better choice for high wear resistant materials, Journal of Materials Research and Technology 2014, 3(2), 172-178.
  • [19] Iyer R.S., Scott J.A., Power station fly ash-a review of value-added utilization outside of the construction industry, Resources, Conservation and Recycling 2001, 31(3), 217-228.
  • [20] Golden D.M., Solidification processing of metal matrix fly ash particle composites, EPRI Journal 1994, 46-49.
  • [21] Rohatgi P.K., Low-cost, fly-ash-containing aluminum-matrix composites, JOM 1994, 46(11), 55-59.
  • [22] Baskaran S., Anandakrishnan V., Duraiselvam M., Investigations on dry sliding wear behavior of in situ casted AA7075-TiC metal matrix composites by using Taguchi technique, Materials & Design 2014, 1(60), 184-192.
  • [23] Li P., Kandalova E.G., Nikitin V.I., In situ synthesis of Al-TiC in aluminum melt, Materials Letters, 59(19-20), 2545-2548.
  • [24] Tjong S.C., Ma Z.Y., Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering: R: Reports 2000, 29(3-4), 49-113.
  • [25] Halil A., Ozcatalbas Y., Turker M., Dry sliding wear behavior of in situ Al-Al4C3 metal matrix composite produced by mechanical alloying technique, Materials & Design 2006, 27(9), 799-804.
  • [26] Sheibani S., Fazel Najafabadi M., In situ fabrication of Al-TiC metal matrix composites by reactive slag process, Materials & Design 2007, 28(8), 2373-2378.
  • [27] Liu L., Li W., Tang Y., Shen B., Hu W., Friction and wear properties of short carbon fiber reinforced aluminum matrix composites, Wear 2009, 266(7-8), 733-738.
  • [28] Subrata Kumar G., Saha P., Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process, Materials & Design 2011, 32(1), 139-145.
  • [29] Wang F., Liu H., Yang B., Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite, Materials Characterization 2005, 54(4-5), 446-450.
  • [30] Kazi Md., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Shorowordi, Wear 2006, 261(5-6), 634-341.
  • [31] Ramesh C.S., Pramod S., Keshavamurthy R., A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites, Materials Science and Engineering: A 2011, 528(12), 4125-4132.
  • [32] Dinaharan I.N., Siva Parameswaran M., Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites, Materials Science and Engineering: A 2011, 528(18), 5733-5740.
  • [33] Lingaraju D., Ramji K., Mohan Rao N.B.R., Characterization and prediction of some engineering properties of polymer-clay/silica hybrid nanocomposites through ANN and regression models l.: Procedia Engineering 2011, 10, 9-18.
  • [34] Basavarajappa S., Chandramohan G., Paulo Davim J., Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites, Materials & Design 2007, 28(4), 1393-1398.
  • [35] Mahapatra S.S., Patnaik A., Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design, Materials & Design 2009, 30(8), 2791-2801.
  • [36] Prasanta S., Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method, Materials & Design 2009, 30(4), 1341-1349.
  • [37] Koksal S., Ficici F., Kayikci R., Savas O., Experimental optimization of dry sliding wear behavior of in situ AlB2/Al. composite based on Taguchi’s method, Materials & Design 2012, 42, 124-130.
  • [38] Şahin Y., Abrasive wear behaviour of SiC/2014 aluminium composite, Tribology International 2010, 43(5-6), 939-943.
  • [39] Gudimetla A., Prasad S.S., Lingaraju D., Influence of RHA reinforcements on mechanical and wear behavior of Al 4032 composites, Emerging Materials Research, 9(4), 1237-1249.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08dc1c15-6438-460e-b809-b8327efdbc50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.