
Journal of Applied Mathematics and Computational Mechanics 2020, 19(2), 73-84
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2020.2.06 e-ISSN 2353-0588

ON APPROXIMATE CONFORMAL MAPPING OF A DISK
AND AN ANNULUS WITH RADIAL AND CIRCULAR SLITS

ONTO MULTIPLY CONNECTED DOMAINS

Pyotr N. Ivanshin, Elena A. Shirokova

Kazan Federal University
Kazan, Russia

pivanshi@yandex.ru, Elena.Shirokova@kpfu.ru

Received: 29 March 2020; Accepted: 17 June 2020

Abstract. The method of boundary curve reparametrization is generalized to the case of
multiply connected domains. We construct the approximate analytical conformal mapping of
the unit disk with m circular slits and n−m radial slits and an annulus with (m−1) circular
slits and n−m radial slits onto an arbitrary given (n+ 1) multiply connected finite domain
with a smooth boundary. The method is based on extension of the Lichtenstein-Gershgorin
equation to a multiply connected domain. The proposed method is reduced to the solution of
a linear system with unknown Fourier coefficients. The approximate mapping function has
the form of a Cauchy integral. Numerical examples demonstrate that the proposed method is
effective in computations.
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1. Introduction

Conformal mappings by the analytical functions of a complex variable play
an important role in the solution of many problems of mechanics and mathemat-
ics, particulary in the case of plane potential fields and the Laplace equation solu-
tion [1]. The conformal mapping of the circular domain (a disk with circular and
radial slits or an annulus with circular and radial slits) onto a multiply connected
domain can be applied to the solution of plane boundary value problems for cor-
responding domains by the Poincare series [2, 3] or equivalently by the Schottky-
-Klein prime function [4]. The existence and uniqueness of the solution for similar
problems under certain assumptions is a consequence of the results of [5]. Com-
puter progress has stimulated the appearance of many numerical methods for confor-
mal mapping constructions [6,7]. For example, the widely-used Wegmann numerical
method is based on the Riemann-Hilbert problem solution and involves iteration pro-
cesses [8, 9]. Some authors searched for boundary reparametrization with lineariza-
tion of this process as in [10, 11]. Many authors apply the integral equations which
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contain the singular integrals. The collocation method or Nyström’s method can be
applied for the solution of such integral equations [12].

Several types of canonical regions exist for conformal mappings [12]. Nasser
managed to map bounded and unbounded multiply connected regions onto these
five canonical regions by reformulating the mapping function as a Riemann-Hilbert
problem which is solved by means of a boundary integral equation with the gener-
alized Neumann kernel [12]. The right-hand side of the integral equation involves
the integral with cotangent singularity which is approximated by Wittich’s method.
The integral equation was discretized by the Nyström method with the trapezoidal
rule to obtain a linear system [12–18].

Here we continue the constructions of [19] and present a new method of
the approximate conformal mapping of the unit disk with circular and radial slits
and an annulus with circular and radial slits onto a multiply connected domain with
a smooth boundary. We apply a method of integral equations generalising the
Lichtenstein-Gershgorin one with a Neumann kernel obtained from the necessary
and sufficient condition for a function defined at the points of a smooth contour to be
the boundary values of some function analytical in the correspondent domain. These
equations were thoroughly described in [7, 20]. We give the approximate solution of
these equations by reduction to a linear system as in [13,14,19], therefore the method
is easily programmable.

2. Approximate conformal mapping of the circular domains
of two types onto a multiply connected domain
by means of boundary reparametrization

Consider a finite (n + 1) - connected domain Dz bounded by the outer simple
smooth curve L0 and the inner simple smooth curves Ls given by the equations

Ls = {z = zs(t), zs(0) = zs(2π), t ∈ [0,2π]}, s = 0, . . . ,N.

We also assume that the boundary curves Ls complex representations are as fol-
lows:

zs(t) =
ns

∑
k=−ms

dkseikt , t ∈ [0,2π], s = 0, . . . ,N.

The parametrization traces the domain Dz along L0 counterclockwise and along the
inner contours Ls, s = 1, . . . ,n, clockwise.

Definition. We call the unit disk with m circular slits ζ = Rseiθ , θ1s < θ < θ2s,
0 < Rs < 1, θ2s−θ1s < 2π , s = 1, . . . ,m, and with n−m radial slits ζ = Reiθ j , 0 <
R1 j < R < R2 j < 1, 0 < θ j < 2π , j = m+1, . . . ,n, an (n+1) - connected canonical
domain of the first type. We call the annulus with the exterior radius 1, with the
interior radius r, r < 1, and with (m− 1) circular slits ζ = Rseiθ , θ1s < θ < θ2s,
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r < Rs < 1, θ2s−θ1s < 2π , s = 1, . . . ,m−1, and with n−m radial slits ζ = Reiθ j , 0 <
R1 j < R < R2 j < 1, 0 < θ j < 2π , j = m+1, . . . ,n, an (n+1)− connected canonical
domain of the second type.

Theorem 1 Analytic-numerical approximate conformal mapping exists for an
(n+ 1)-connected circular domain Dζ of the first type such that the function f (ζ )
maps conformally the domain Dζ onto the given (n+ 1)-connected domain Dz with
smooth boundary components. The approximate solution converges to the exact one
as O(1/N2). Here N is the size of the truncated auxiliary matrix. 2

PROOF Existence of solution is a known fact [5], so we concentrate on the approx-
imate solution construction and proof of its convergence. The map is unique under
the following conditions: f (0) = A+ iB, f (1) =C+ iD, (A,B) ∈ Dz, (C,D) ∈ L0.

We assume that 0∈Dz and A+ iB = 0 without loss of generality. We give the con-
structive proof. We construct the conformal map of the circular domain of the first
type onto the domain Dz by reparametrization of the given boundary representations.
So we search for the function t0(θ), θ ∈ [0,2π], for the functions ts(θ), s = 1, . . . ,m,
θ ∈ [θ1s,θ2s], and for the functions t j(R), R∈ [R1 j,R2 j], such that the values zs(ts(θ)),
s = 0, . . . ,m, z j(t j(R)), be the boundary values of an analytic function in the corre-
sponding circular domain. The parameters Rs, θ1s, θ2s, s = 1, . . . ,m, R1 j, R2 j, θ j,
j = m+1, . . . ,n, are also unknown and will be found within the solution process.

Let us consider the analytic in the domain Dz function ζ (z) which maps confor-
mally the domain Dz onto Dζ with the correspondence ζ (0) = 0 and the analytic in

Dz function log
z
ζ

. According to [21], the necessary and sufficient condition for log
z
ζ

to be analytic in Dz are the boundary relations

log
zs(t)

Rseiθs(t)
=

m

∑
σ=0

1
πi

2π∫
0

log
zσ (τ)

Rσ eiθσ (τ)
[log(zσ (τ)− zs(t))]′τdτ+,

n

∑
j=m+1

1
πi

2π∫
0

log
z j(τ)

R j(τ)eiθ j
[log(z j(τ)− zs(t))]′τdτ, (1)

where t ∈ [0,2π] , s = 0, . . . ,m, R0 = 1, and

log
z j(t)

R j(t)eiθ j
=

m

∑
s=0

1
πi

2π∫
0

log
zs(τ)

Rseiθs(τ)
[log(zs(τ)− z j(t))]′τdτ+,

n

∑
k=m+1

1
πi

2π∫
0

log
zk(τ)

Rk(τ)eiθk
[log(zk(τ)− z j(t))]′τdτ, (2)
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where t ∈ [0,2π], j = m+1, . . . ,n.
We introduce the following functions: qs(t) = argzs(t)−θs(t), where θs(t) is the

polar angle of the image of the point of zs(t), s = 0, . . . ,m, and p j(t) = log |z j(t)|−
logR j(t), where R j(t) is the radius of the image of the point of z j(t), j = m+1, . . . ,n.

We separate the imaginary part of both sides of equation (1) and arrive to the
equation system described in [3]:

qs(t)=
m

∑
σ=0

1
π

2π∫
0

qσ (τ)[arg(zσ (τ)−zs(t))]′τdτ−
m

∑
σ=0

1
π

2π∫
0

log
|zσ (τ)|

Rσ

[log |zσ (τ)−zs(t)|]′τdτ +

+
n

∑
j=m+1

1
π

2π∫
0

[argz j(τ)−θ j][arg(z j(τ)− zs(t))]′τdτ −

−
n

∑
j=m+1

1
π

2π∫
0

p j(τ)[log |z j(τ)− zs(t)|]′τdτ, s = 0, . . . ,m. (3)

This system generalizes the Lichtenstein-Gershgorin equation for non simple-connected
regions.

We separate the real part of both sides of equation (2):

p j(t) =
m

∑
s=0

1
π

2π∫
0

[log |zs(τ)|− logRs][arg(zs(τ)− z j(t))]′τdτ +

+
m

∑
s=0

1
π

2π∫
0

qs(τ)[log |zs(τ)− z j(t)|]′τdτ +
n

∑
k=m+1

1
π

2π∫
0

pk(τ)[arg(zk(τ)− z j(t))]′τdτ +

+
n

∑
k=m+1

1
π

2π∫
0

[arg[zk(τ)−θk][log |zk(τ)− z j(t)|]′τdτ, j = m+1, . . . ,n. (4)

After differentiating relations (3) and (4) with respect to t and integrating the
results by parts, we obtain the following relations on the functions q′s(t) and p′j(t)
respectively:

q′s(t)=
m

∑
σ=0

1
π

2π∫
0

q′σ (τ)Kσ ,s(τ, t)dτ+
n

∑
j=m+1

1
π

2π∫
0

p′j(τ)L j,s(τ, t)dτ+Qs(t), s= 0, . . . ,m,

(5)
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p′j(t)=−
m

∑
s=0

1
π

2π∫
0

q′s(τ)Ls, j(τ, t)dτ+
n

∑
k=m+1

1
π

2π∫
0

p′k(τ)Kk, j(τ, t)dτ+Pj(t), j =m+1, . . . ,n,

(6)
where

Kσs(τ, t) =−[arg(zσ (τ)− zs(t))]′t , L j,s(τ, t) = [log(z j(τ)− zs(t))]′t ,

Qs(t) =
m

∑
σ=0

1
π

2π∫
0

[log |zσ (τ)|]′Lσ ,s(τ, t)dτ +
n

∑
j=m+1

1
π

2π∫
0

(argz j(τ))
′K j,s(τ, t)dτ,

Pj(t) =
m

∑
s=0

1
π

2π∫
0

[log |zs(τ)|]′Ks, j(τ, t)dτ−
n

∑
k=m+1

1
π

2π∫
0

(argzk(τ))
′Lk, j(τ, t)dτ.

The kernel Lσ ,s has a singularity in the form of cot
τ− t

2
for σ = s:

(log |zs(τ)− zs(t)|)′t = ℜ

(
log

ns

∑
k=−ms

dks[eikτ − eikt ]

)′
t

= ℜ

(
logsin

τ− t
2

+

+ log

[
ns

∑
k=1

dkseikt
k−1

∑
l=0

eil(τ−t)−
ms

∑
k=1

d(−k)se
−ikτ

k−1

∑
l=0

eil(τ−t)

])′
t

=

=−1
2

cot
τ− t

2
+

(
log

∣∣∣∣∣ ns

∑
k=1

dkseikt
k−1

∑
l=0

eil(τ−t)−
ms

∑
k=1

d(−k)se
−ikτ

k−1

∑
l=0

eil(τ−t)

∣∣∣∣∣
)′

t

.

The Cauchy principal value integral
1
π

2π∫
0

[log |zσ (τ)|]′ cot
τ− t

2
dτ can be calcu-

lated via Hilbert formula [15] as in [14]. Finally, we obtain the following system of
Fredholm integral equations of the second kind which can be written in the operator
form as follows:

I−K0,0 −K1,0 . . . −Km,0 −Lm+1,0 . . . −Ln,0
−K0,1 I−K1,1 . . . −Km,1 −Lm+1,1 . . . −Ln,1
. . . . . . . . . . . . . . . . . . . . .
−K0,m −K1,m . . . I−Km,m −Lm+1,m . . . −Ln,m

L0,m+1 L1,m+1 . . . Lm,m+1 I−Km+1,m+1 . . . −Kn,m+1
. . . . . . . . . . . . . . . . . . . . .
L0,n L1,n . . . Lm,n −Km+1,n . . . I−Kn,n





q′0
. . .
q′m

p′m+1
. . .
p′n

=
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=
(
Q0, . . . ,Qm,Pm+1, . . . ,Pn

)T

The last operator system can be reduced to the infinite linear system over the
Fourier coefficients of the unknown functions q′s(t), s = 0, . . . ,m, p′j(t), j = m +
+ 1, . . . ,n, if we find the coefficients of double Fourier expansions of the kernels of
integral operators and compare the coefficients with the same trigonometric functions
[13]. The approximate solution of the infinite system over Fourier coefficients of the
unknown functions is a solution of a truncated system over the Fourier coefficients of
the unknown functions.

Convergence of the approximate solution of system (5)-(6) to the exact one pro-
vided M → ∞ was proved in [13] for the case of conformal mapping of a simply
connected domain. This proof can be applied to the case of multiply connected do-
main if we replace the corresponding space l2 by the space l2× l2× ...× l2.

We search for the approximate solution of system (5)-(6) in the form of Fourier
polynomials:

q′s(t) =
M

∑
l=1

αls cos lt +βls sin lt, s = 0, . . . ,m, p′j(t) =
M

∑
l=1

αl j cos lt +βl j sin lt, (7)

Here j = m+1, . . . ,n, t ∈ [0,2π].
Now integral Fredholm equations of the second kind in (5) and (6) can be reduced

to the linear system over Fourier coefficients αls and βls, s = 0, . . . ,m, αl j and βl j,
j = m+1, . . . ,n:



A00 B00 A01 . . . B0n E0m+1 F0m+1 . . . E0n

C00 D00 C01 . . . D0m G0m+1 H0m+1 . . . H0n
...

...
...

. . .
...

...
. . .

...
Cm0 Dm0 Cm1 . . . Dmm Gmm+1 Hmm+1 . . . Hmn

Pm+10 Qm+10 Pm+11 . . . Qm+1m Rm+1m+1 Sm+1m+1 . . . Sm+1n

Nm+10 Tm+10 Nm+11 . . . Tm+1m Vm+1m+1 Um+1m+1 . . . Um+1n
...

...
...

. . .
...

...
. . .

...
Nn0 Tn0 Nn1 . . . Tnm Vnm+1 Unm+1 . . . Unn


×



α0
β0
α1
β1
...

βn


=

=
(
a0,b0,a1,b1, . . . ,bn

)T
,

where αs = (α1s, . . . ,αns)
T , βs = (β1s, . . . ,βns)

T . The vectors as = (a1s, . . . ,ans)
T ,

bs = (b1s, . . . ,bns)
T on the right-hand side of the system consist of the elements

a js =
1
π

2π∫
0

Qs(t)cos jtdt, b js =
1
π

2π∫
0

Qs(t)sin jtdt, j = 1, . . . ,m, s = 0, . . . ,m,
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a jk =
1
π

2π∫
0

Pk(t)cos jtdt, b jk =
1
π

2π∫
0

Pk(t)sin jtdt, j = 1, . . . ,m, k = m+1, . . . ,n,

The block matrices Aσs, Bσs, Cσs, Dσs, Eσ l , Fσ l , Gσ l , Hσ l , Pps, Qps, Nps, Tps, Rpl ,
Spl , Vpl , Upl , σ ,s = 0, . . . ,m, l, p = m+1, . . . ,n of size M×M consist of the elements

Aσs jk = δσsδ jk−
1

π2

2π∫
0

coskτdτ

2π∫
0

Kσs(τ, t)cos jtdt,Bσs jk =−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Kσs(τ, t)cos jtdt,

Cσs jk =−
1

π2

2π∫
0

coskτdτ

2π∫
0

Kσs(τ, t)sin jtdt,Dσs jk = δσsδ jk−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Kσs(τ, t)sin jtdt,

Eσ l jk =−
1

π2

2π∫
0

coskτdτ

2π∫
0

Lσ l(τ, t)cos jtdt,Fσ l jk =−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Lσ l(τ, t)cos jtdt,

Gσ l jk =−
1

π2

2π∫
0

coskτdτ

2π∫
0

Lσ l(τ, t)sin jtdt,Upl jk = δplδ jk−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Kpl(τ, t)sin jtdt,

Hσ l jk =−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Lσ l(τ, t)sin jtdt,Pps jk =
1

π2

2π∫
0

coskτdτ

2π∫
0

Lps(τ, t)cos jtdt,

Qps jk =
1

π2

2π∫
0

sinkτdτ

2π∫
0

Lps(τ, t)cos jtdt,Nps jk =
1

π2

2π∫
0

coskτdτ

2π∫
0

Lps(τ, t)sin jtdt,

Tps jk =
1

π2

2π∫
0

sinkτdτ

2π∫
0

Lps(τ, t)sin jtdt,Rpl jk = δplδ jk−
1

π2

2π∫
0

coskτdτ

2π∫
0

Kpl(τ, t)cos jtdt,

Spl jk =−
1

π2

2π∫
0

sinkτdτ

2π∫
0

Kpl(τ, t)cos jtdt,Vpl jk =−
1

π2

2π∫
0

coskτdτ

2π∫
0

Kpl(τ, t)sin jtdt,

where j,k = 1, . . . ,m, δrt is the Kronecker delta function.
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The functions qs(t), s = 0, . . . ,m, and p j(t), j = m+1, . . . ,n, can be restored via
their derivatives (7) with an arbitrary constant summand

qs(t) = q0s + q̃s(t), q̃s(t) =
M

∑
l=1

αls

l
sin lt− βls

l
cos lt,

p j(t) = p0 j + p̃ j(t), p̃ j(t) =
M

∑
l=1

αl j

l
sin lt− βls

l
cos lt, t ∈ [0,2π]. (8)

We choose the constant summand q00 in accordance with the condition f (1) =C+ iD
in the following way. We find the value of the parameter t̂ such that z0(t̂) = C+ iD.
Now q00 = arg(C+ iD)− q̃0(t̂).

We obtain the values of the other constant summands q0s, s = 1, . . . ,m, p0 j, j =
= m+ 1, . . . ,n, and also the values of Rs, s = 1, . . . ,m, θ j, j = m+ 1, . . . ,n, in the
following way. We take n points in each of n finite component of the set comple-

ment of Dz. Let us denote these points z∗k , k = 1, . . . ,n. The function log
zs(t)

Rseiθ(t)
,

s = 0, . . . ,m, log
z j(t)

R(t)eiθ j(t)
, j = m+ 1, . . . ,n, is the boundary value of the analyti-

cal in Dz function, so the Cauchy integral with the corresponding density along the
boundary of Dz vanishes at the points z∗j , j = 1, . . . ,n. Therefore, we have the linear
complex system

m

∑
σ=0

1
2πi

2π∫
0

[iq0σ − logRσ + log |zσ (τ)|+ iq̃s(τ)] [log(zσ (τ)− z∗j)]
′
τdτ +

n

∑
k=m+1

1
2πi

2π∫
0

[−iθk + iargzk(τ)+ p0k + p̃k(τ)] [log(zk(τ)− z∗j)]
′
τdτ = 0, j = 1, . . . ,n,

with the unknown real q0σ , logRσ , σ = 1, . . . ,m, p0k, θk, k = m+1, . . . ,n.
We restore the values of θ1 j , θ2 j, j = 1, . . . ,m, after we have restored q0 j. Then

θ1 j = min
t∈[0,2π]

[argzi(t)− q̃ j(t)]−q0 j, θ2 j = max
t∈[0,2π]

[argzi(t)− q̃ j(t)]−q0 j.

We restore the values of R1 j , R2 j, j = m+1, . . . ,n, after we have restored p0 j. Then

logR1 j = min
t∈[0,2π]

[log |z j(t)|− p̃ j(t)]− p0 j, logR2 j = max
t∈[0,2π]

[log |z j(t)|− p̃ j(t)]− p0 j.

So all parameters of the circular domain of the first type Dζ have been found.
Now we have the functions qs(t), s = 0, . . . ,m, pk(t), k = m+1, . . . ,n, t ∈ [0,2π],

and therefore we can restore the relations between the boundary parameters of the do-
mains Dz and Dζ via the formulas θs(t) = argzs(t)−qs(t), s = 0, . . . ,m, logRk(t) =
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= log |zk(t)| − pk(t), k = m+ 1, . . . ,n. Note that θ0(t) grows monotonically when
t grows from 0 to 2π , θ0(2π)− θ0(0) = 2π , while each of the functions θs(t), s =
= 1, . . . ,m, logRk(t), k = m+ 1, . . . ,n, is 2π-periodic with one interval of increase
and one interval of decrease. We can restore the inverse to θ0(t) monotonically
increasing function t0(θ) and we can restore the single-valued functions t±s (θ),
θ ∈ [θ1s,θ2s], s = 1, . . . ,m, and t±s (R), R ∈ [R1k,R2k], k = m+1, . . . ,n .

The approximate analytical function which maps Dζ onto Dz now has the form of
the Cauchy integral

f (ζ ) =
1

2π

2π∫
0

z0(t0(θ))eiθ dθ

eiθ −ζ
+

m

∑
s=1

1
2π

θ2s∫
θ1s

[zs(t+s (θ))− zs(t−s (θ))]Rseiθ

Rseiθ −ζ
dθ+

+
n

∑
j=m+1

1
2πi

R2s∫
R1 j

[z j(t+j (R))− z j(t−j (R))]e
iθ j

Reiθ j −ζ
dR.

We can apply the Cauchy integral in the form

f (ζ ) =
1

2π

2π∫
0

z0(t)eiθ0(t)θ ′0(t)dt
eiθ0(t)−ζ

+
m

∑
s=1

1
2π

2π∫
0

zs(t)Rseiθs(t)θ ′s(t)
Rseiθs(t)−ζ

dt+

+
n

∑
k=m+1

1
2πi

2π∫
0

z j(t)R′j(t)e
iθ j

R j(t)eiθ j −ζ
dt. (9)

in order not to deal with the functions t±s (θ) or t±j (R) and not to integrate along
the different borders of the same slit.

The values of f (ζ ) at the points of Dζ close to the boundary can be calculated
with the help of analytic continuation of the Cauchy integral as in [22].

Theorem 2 Analytic-numerical approximate conformal mapping exists for an
(n+1)-connected circular domain Dζ of the second type such that the function f (ζ )
maps conformally the domain Dζ onto the given (n+ 1)-connected domain Dz with
smooth boundary components. The approximate solution converges to the exact one
as O(1/N2). Here N is the size of the truncated auxiliary matrix. 2

PROOF Existence of the exact solution is a generalisation of the Riemann Theorem
[5]. The map is unique under the following conditions: the image of the inner circle
|ζ |= r is the boundary component L j, j ∈ {1,2, . . . ,m}, f (1) =C+ iD, (C,D) ∈ L0.

We assume that j = 1 and
2π∫
0

(argz1(t))′dt = −2π without loss of generality. We

construct the conformal map of the circular domain of the first type onto the domain
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Dz by reparametrization of the given boundary representations. So, we search for
functions ts(θ), θ ∈ [0,2π], s = 0,1, for the functions, for the functions ts(θ), θ ∈
[θ1s,θ2s], s = 2, . . . ,m, and for the functions t j(R), R ∈ [R1 j,R2 j], j = m+ 1, . . . ,n.
The construction is as the one for mapping of the circular domain of the first type.

We consider the analytic in the domain Dz function ζ (z) which maps conformly
the domain Dz onto Dζ and the analytic in Dz function log

z
ζ

. We apply the necessary

and sufficient conditions for log
z
ζ

to be analytic in Dz which are boundary relations

(1) and (2) as above. We introduce the functions qs(t) = argzs(t)−θs(t), s = 0, . . . ,m
and p j(t) = log |z j(t)|− logR j(t), j = m+1, . . . ,n. After separation of the imaginary
or real parts of both sides of these equations, differentiation with respect to τ and
integration by parts we have equations (3) and (4). We reduce the solution of the
integral equations to the solution of a linear system with truncated matrices if we
consider q′s(t) representations (7). Now we restore the functions qs(t), p j(t) as in (8).
The constant summand q00 can be restored in the same way as for the previous case.
The values of q0s, p0 j, and Rs, θ j, s = 1, . . . ,m, j = m+1, . . . ,n, can also be restored
as above with the help of the additional points z∗s , s = 1, . . . ,n, located in the exterior
of the domain Dz. Note that z∗1 = 0. �

3. Examples

1. Elliptic domain with two elliptic holes. Consider the elliptic domain bounded by
the curve 6eit − e−it with the holes bounded by the curves 0.2eit − 0.8e−it − 3i and
0.8ei(−t+π/4)+0.2e−i(−t−π/4)+3i, t ∈ [0,2π]. We constructed the conformal mapping
from the unit disk with two radial slits: over the interval [0.25e−i1.578,0.82e−i1.578]
and over the interval [0.27ei1.588,0.8ei1.588], the former is the preimage of the lower
ellipse and the latter is mapped into the upper one. We give the preimage of the
domain, a part of the polar coordinate net and the solution result (Fig. 2).
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Fig. 1. The elliptic domain with two holes and radial slits
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2. Elliptic domain with two elliptic holes. Consider the elliptic domain bounded by
the curve 6eit − e−it with the holes bounded by the curves 0.2eit − 0.8e−it − 3i and
0.8ei(−t+π/4)+0.2e−i(−t−π/4)+3i, t ∈ [0,2π]. We constructed the conformal mapping
from the unit disk with one radial and one circular slit: over the interval [e0.93i,e2.18i]
and over the interval [0.27e−i1.588,0.84e−i1.588], the former is the preimage of the
lower ellipse and the latter is mapped into the upper one. We give the preimage of the
domain, a part of the polar coordinate net and the solution result (Fig. 2).
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Fig. 2. The elliptic domain with two holes; circular and radial slits

4. Conclusions

Our method of the approximate solution construction is based on linear integral
equations. These equations are reduced to an infinite linear system over Fourier co-
efficients of unknown conjugate functions. The infinite system is truncated to a finite
one. The method does not apply any auxiliary constructions or specific conformal
mappings, it does not use the accessory solutions of boundary value problems and it
does not require iterations. It allows us to construct and compute the conformal map-
pings onto different multi-connected domains without recursion and other iterative
procedures. The accuracy similar to that of [23] can be achieved with a matrix of the
size of 200. The resulting approximate solution presented here is an analytic func-
tion with all of its properties such as possessing derivatives of any order. The natural
replacement of all the features in our case is a solution of a large linear system.
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