Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Flow Diverter is one of the methods used in the treatment of a fusiform aneurysm. While this method is popular in treating anomalies of the cerebral vasculature, it is not commonly used in the treatment of aortic aneurysms. The numerical simulation in a patient-specific model of the abdominal aortal aneurysm allowed us to investigate and visualize the hemodynamics of blood before and after stent implantation. Our custom software (updated version of MeMoS) was used to reproduce the vessel geometry on the basis of imported DICOM image sets. The blood flow was modeled as pulsatile and with non-Newtonian rheology. A velocity distribution, vorticity, a region of stagnation and wall shear stress were plotted to give an insight into the mechanism of operation of Flow Diverter stents. Additionally, a quantitative analysis of the blood distribution among chosen abdominal arteries for one full cardiac cycle was performed. A Flow Diverter stent implanted in the fusiform aneurysmal sack involving the abdominal aorta significantly changed the flow pattern in the region of the aneurysm, but it did not contribute to diminished flow to the renal arteries.
Wydawca
Czasopismo
Rocznik
Tom
Strony
375--390
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
- Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Lodz, Poland
- Department of Neurosurgery, University of California, San Diego-Rady Children’s Hospital, San Diego, USA
autor
- Department of Radiology, Medical University of Lodz, Barlicki University Hospital, Lodz, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor
- Department of Neurosurgery, University of California, San Diego-Rady Children’s Hospital, San Diego, USA
Bibliografia
- [1] Chen S, Chen X, Ning B, Cao Y, Wang S. Supraclinoid internal carotid artery blister-like aneurysms: hypothesized pathogenesis and microsurgical clipping outcomes. Chin Neurosurg J 2021;7(1):1.
- [2] Shah SS, Gersey ZC, Nuh M, Ghonim HT, Elhammady MS, Peterson EC. Microsurgical versus endovascular interventions for blood-blister aneurysms of the internal carotid artery: systematic review of literature and metaanalysis on safety and efficacy. J Neurosurg 2017;127 (6):1361–73.
- [3] Fu W, Gu Z, Meng X, Chu Bo, Qiao A. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. J Biomech 2010;43(7):1337–42.
- [4] Appanaboyina S, Mut F, Löhner R, Putman CM, Cebral JR. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fluids 2008;57(5):475–93.
- [5] Kim M, Taulbee DB, Tremmel M, Meng H. Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann Biomed Eng 2008;36(5):726–41.
- [6] Rouchaud A, Brinjikji W, Cloft HJ, Kallmes DF. Endovascular treatment of ruptured blister-like aneurysms: a systematic review and meta-analysis with focus on deconstructive versus reconstructive and flow-diverter treatments. Am J Neuroradiol 2015;36(12):2331–9.
- [7] Iosif C, Mounayer C, Yavuz K, Saleme S, Geyik S, Cekirge HS, et al. Middle cerebral artery bifurcation aneurysms treated by extrasaccular flow diverters: midterm angiographic evolution and clinical outcome. Am J Neuroradiol 2017;38(2):310–6.
- [8] Schüngel M-S, Quäschling U, Weber E, Struck MF, Maybaum J, Bailis N, et al. Endovascular treatment of intracranial aneurysms in small peripheral vessel segments—efficacy and intermediate follow-up results of flow diversion with the silk vista baby low-profile flow diverter. Front Neurol 2021;12. https://doi.org/10.3389/fneur.2021.671915.
- [9] Michelozzi C, Darcourt J, Guenego A, Januel A-C, Tall P, Gawlitza M, et al. Flow diversion treatment of complex bifurcation aneurysms beyond the circle of Willis: complications, aneurysm sac occlusion, reabsorption, recurrence, and jailed branch modification at follow-up. J Neurosurg 2019;131(6):1751–62.
- [10] Gawlitza M, Januel A-C, Tall P, Bonneville F, Cognard C. Flow diversion treatment of complex bifurcation aneurysms beyond the circle of Willis: a single-center series with special emphasis on covered cortical branches and perforating arteries. J Neurointerv Surg 2016;8(5):481–7.
- [11] Mihalea C, Caroff J, Ikka L, Benachour N, Da Ros V, Abdelkhalek H, et al. Y-stenting with braided stents for wide-neck intracranial bifurcation aneurysms. A single-center initial experience. J Neuroradiol 2020;47(3):227–32.
- [12] Kojima M, Irie K, Fukuda T, Hirose Y, Negoro M, Arai F. The study of flow diversion effects on aneurysm using multiple enterprise stents and two flow diverters. Asian J Neurosurg 2012;7(4):159. https://doi.org/10.4103/1793-5482.106643.
- [13] Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R, Lylyk P, et al. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. Am J Neuroradiol 2011;32(1):27–33.
- [14] Ma D, Dargush GF, Natarajan SK, Levy EI, Siddiqui AH, Meng H. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J Biomech 2012;45(13):2256–63.
- [15] Byrne JV, Beltechi R, Yarnold JA, Birks J, Kamran M, Deli MA. Early experience in the treatment of intra-cranial aneurysms by endovascular flow diversion: a multicentre prospective study. PLoS ONE 2010;5(9):e12492.
- [16] Siddiqui AH, Abla AA, Kan P, Dumont TM, Jahshan S, Britz GW, et al. Panacea or problem: flow diverters in the treatment of symptomatic large or giant fusiform vertebrobasilar aneurysms. J Neurosurg 2012;116(6):1258–66.
- [17] Kulcsár Z, Houdart E, Bonafé A, Parker G, Millar J, Goddard AJP, et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. Am J Neuroradiol 2011;32(1):20–5.
- [18] Brinjikji W, Chung BJ, Jimenez C, Putman C, Kallmes DF, Cebral JR. Hemodynamic differences between unstable and stable unruptured aneurysms independent of size and location: a pilot study. J Neurointerv Surg 2017;9(4):376–80.
- [19] Duan G, Lv N, Yin J, Xu J, Hong B, Xu Y, et al. Morphological and hemodynamic analysis of posterior communicating artery aneurysms prone to rupture: a matched case–control study. J Neurointerv Surg 2016;8(1):47–51.
- [20] Varble N, Kono K, Rajabzadeh-Oghaz H, Meng H. Rupture resemblance models may correlate to growth rates of intracranial aneurysms: preliminary results. World neurosurgery 2018;1(110):e794–805.
- [21] Sforza DM, Kono K, Tateshima S, Viñuela F, Putman C, Cebral JR. Hemodynamics in growing and stable cerebral aneurysms. J Neurointerv Surg 2016;8(4):407–12.
- [22] Wang Y, Leng X, Zhou X, Li W, Siddiqui AH, Xiang J. Hemodynamics in a middle cerebral artery aneurysm before its growth and fatal rupture: Case study and review of the literature. World neurosurgery 2018;1(119):e395–402.
- [23] Ito Y, Cho I, Sakai Y, Iwano K. CFD study on the efficacy of flow diverter stent placement for cerebral aneurysms. J Appl Fluid Mech 2021;14(5):1547–58.
- [24] Kim S, Yang H, Hong I, Oh JH, Kim YB. Computational Study of Hemodynamic Changes Induced by Overlapping and Compacting of Stents and Flow Diverter in Cerebral Aneurysms. Front Neurol 2021;1369.
- [25] Zhang H, Li L, Miao F, Yu J, Zhou B, Pan Y. Computational fluid dynamics analysis of intracranial aneurysms treated with flow diverters: A case report. Neurochirurgie 2022;68 (2):235–8.
- [26] Tang A-S, Chung W-C, Liu E-Y, Qu J-Q, Tsang A-O, Leung G-K, et al. Computational fluid dynamics study of bifurcation aneurysms treated with pipeline embolization device: side branch diameter study. J Med Biol Eng 2015;35(3):293–304.
- [27] Narata AP, de Moura FS, Larrabide I, Perrault CM, Patat F, Bibi R, et al. The role of hemodynamics in intracranial bifurcation arteries after aneurysm treatment with flow-diverter stents. Am J Neuroradiol 2018;39(2):323–30.
- [28] Liu Y, Jiang G, Wang F, An X. Quantitative assessment of changes in hemodynamics after obliteration of large intracranial carotid aneurysms using computational fluid dynamics. Front Neurol 2021;29(12):496.
- [29] Wiśniewski K, Tomasik B, Tyfa Z, Reorowicz P, Bobeff EJ, Stefanńczyk L, et al. Porous media computational fluid dynamics and the role of the first coil in the embolization of ruptured intracranial aneurysms. J Clin Med 2021;10(7):1348. https://doi.org/10.3390/jcm10071348.
- [30] Peng L, Chen J, Cheng Y, Lv N, Gao H, Bai B. The hemodynamic effect of flow diverter treatment of intracranial bifurcation aneurysms. J Med Biol Eng 2020;40 (6):851–7.
- [31] Baheri Islami S, Wesolowski M, Revell W, Chen X. Virtual reality visualization of CFD simulated blood flow in cerebral aneurysms treated with flow diverter stents. Appl Sci 2021;11 (17):8082.
- [32] Khan MO, Arana VT, Najafi M, MacDonald DE, Natarajan T, Valen-Sendstad K, et al. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms. J Biomech 2021;11(127) 110683.
- [33] Li Y, Verrelli DI, Yang W, Qian Y, Chong W. A pilot validation of CFD model results against PIV observations of haemodynamics in intracranial aneurysms treated with flow-diverting stents. J Biomech 2020;13(100) 109590.
- [34] Tomaszewski M, Sybilski K, Baranowski P, Małachowski J. Experimental and numerical flow analysis through arteries with stent using particle image velocimetry and computational fluid dynamics method. Biocybern Biomed Eng 2020;40(2):740–51.
- [35] Ong C, Xiong F, Kabinejadian F, Kumar GP, Cui F, Chen G, et al. Hemodynamic analysis of a novel stent graft design with slit perforations in thoracic aortic aneurysm. J Biomech 2019;6 (85):210–7.
- [36] Nardi A, Avrahami I. Approaches for treatment of aortic arch aneurysm, a numerical study. J Biomech 2017 Jan;4 (50):158–65.
- [37] Chen D, Wei J, Deng Y, Xu H, Li Z, Meng H, et al. Virtual stenting with simplex mesh and mechanical contact analysis for real-time planning of thoracic endovascular aortic repair. Theranostics 2018;8(20):5758.
- [38] Kyriakou F, Maclean C, Dempster W, Nash D. Efficiently simulating an endograft deployment: a methodology for detailed CFD analyses. Ann Biomed Eng 2020;48(10):2449.
- [39] Tyfa Z, Strzelecki M. MeMoS - A software tool for extraction of anatomical structures data from 3D medical images. In2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) 2016 Sep 21 (pp. 97-102). IEEE.
- [40] Tyfa Z, Obidowski D, Jóźwik K. Numerical analysis of the VAD outflow cannula positioning on the blood flow in the patient- specific brain supplying arteries. Mech Mech Eng 2020;22 (2):619–36.
- [41] Polanczyk A, Piechota-Polańczyk A, Stefanczyk L, Strzelecki M. Shape and enhancement analysis as a useful tool for the presentation of blood hemodynamic properties in the area of aortic dissection. J Clin Med 2020;9(5):1330.
- [42] Celik IB, Ghia U, Roache PJ, Freitas CJ. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of fluids Engineering-Transactions of the ASME. 2008 Jul 1;130(7).
- [43] Schmidt RF, Lang F, Heckmann M, editors. Physiologie des menschen: mitpathophysiologie. Springer-Verlag; 2011.
- [44] Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech 2014;47(7):1642–51.
- [45] Tyfa Z, Obidowski D, Reorowicz P, Stefańczyk L, Fortuniak J, Jóźwik K. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Biocybern Biomed Eng 2018;38(2):228–42.
- [46] Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries. J Biomech 2010;43(2):177–85.
- [47] Jodko D, Obidowski D, Reorowicz P, Jóźwik K. Simulations of the blood flow in the arterio-venous fistula for haemodialysis. Acta Bioeng Biomech 2014;16(1).
- [48] Jodko D, Obidowski D, Reorowicz P, Jóźwik K. Blood flows in end-to-end arteriovenous fistulas: Unsteady and steady state numerical investigations of three patient-specific cases. Biocybern Biomed Eng 2017;37(3):528–39.
- [49] Prisco AR, Aliseda A, Beckman JA, Mokadam NA, Mahr C, Garcia GJ. Impact of LVAD implantation site on ventricular blood stagnation. ASAIO Journal (American Society for Artificial Internal Organs: 1992). 2017 Jul;63(4):392.
- [50] Polanczyk A, Podyma M, Stefanczyk L, Szubert W, Zbicinski I. A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. J Biomech 2015 Feb 5;48 (3):425–31.
- [51] Kabinejadian F, Cui F, Su B, Danpinid A, Ho P, Leo HL. Effects of a carotid covered stent with a novel membrane design on the blood flow regime and hemodynamic parameters distribution at the carotid artery bifurcation. Med Biol Eng Compu 2015;53(2):165–77.
- [52] Wong KC, Büsen M, Benzinger C, Gäng R, Bezema M, Greatrex N, et al. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis. Artif Organs 2014;38(9):810–7.
- [53] Otani T, Ii S, Hirata M, Wada S. Computational study of the non-Newtonian effect of blood on flow stagnation in a coiled cerebral aneurysm. Nihon Reoroji Gakkaishi 2017 Dec 15;45 (5):243–9.
- [54] Obidowski D, Reorowicz P, Witkowski D, Sobczak K, Jóźwik K. Methods for determination of stagnation in pneumatic ventricular assist devices. Int J Artif Organs 2018;41 (10):653–63.
- [55] Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35(11):2500–5.
- [56] Polanczyk A, Piechota-Polanczyk A, Huk I, Neumayer C, Balcer J, Strzelecki M. Computational fluid dynamic technique for assessment of how changing character of blood flow and different value of hct influence blood hemodynamic in dissected aorta. Diagnostics 2021;11 (10):1866.
- [57] Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007 Jun 26;49(25):2379–93.
- [58] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91(1):327–87.
- [59] Bracale UM, Giribono AM, Vitale G, Narese D, Santini G, Del Guercio L. Accidental coverage of both renal arteries during infrarenal aortic stent-graft implantation: cause and treatment. Case Rep Vasc Med 2014;3:2014.
- [60] Larrabide I, Aguilar ML, Morales HG, Geers AJ, Kulcsár Z, Rüfenacht D, et al. Intra-aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape. Am J Neuroradiol 2013 Apr 1;34(4):816–22.
- [61] Kakinuma R, Moriyama N, Muramatsu Y, Gomi S, Suzuki M, Nagasawa H, et al. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner. PLoS ONE 2015 Sep 9;10(9) e0137165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08da1128-583a-4258-88d7-475a52b936e4