Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, nonlinear free vibration of nanobeams with various end conditions is studied using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with von K´arm´an nonlinearity. The equation of motion is obtained and the exact solution is established using elliptic integrals. Two comparison studies are carried out to demonstrate accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in the presence of the small scale effect are symmetric ellipses, and consideration the small scale effect decreases the area of the diagram.
Czasopismo
Rocznik
Tom
Strony
649--658
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- School of Engineering, Damghan University, Damghan, Islamic Republic of Iran
autor
- School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran and Center of Excellence in Railway Transportation, Iran University of Science and Technology, Narmak, Tehran, Iran
Bibliografia
- 1. Ansari R., Ramezannezhad H., 2011, Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects, Physica E, 43, 1171-1178
- 2. Azrar L., Benamar R., White R., 1999, Semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes. Part I: General theory and application to the single mode approach to free and forced vibration analysis, Journal of Sound and Vibration, 224, 183-207
- 3. Azrar L., Benamar R., White R., 2002, A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes. Part II: Multimode approach to the steady state forced periodic response, Journal of Sound and Vibration, 255, 1-41
- 4. Bhashyam G., Prathap G., 1980, Galerkin finite element method for non-linear beam vibrations, Journal of Sound and Vibration, 72, 191-203
- 5. Byrd P.F., Friedman M.D., Byrd P., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Springer Berlin
- 6. Chandra R., Raju B.B., 1975, Large deflection vibration of angle ply laminated plates, Journal of Sound and Vibration, 40, 393-408
- 7. Chong A., Yang F., Lam D., Tong P., 2001, Torsion and bending of micron-scaled structures, Journal of Materials Research, 16, 1052-1058
- 8. Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer
- 9. Evensen D., 1968, Nonlinear vibrations of beams with various boundary conditions, AIAA Journal, 6, 370-372
- 10. Fang B., Zhen Y.-X., Zhang C.-P., Tang Y., 2013, Nonlinear vibration analysis of doublewalled carbon nanotubes based on nonlocal elasticity theory, Applied Mathematical Modelling, 37, 1096-1107
- 11. Fleck N., Muller G., Ashby M., Hutchinson J., 1994, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 475-487
- 12. Ghorbanpour Arani A., Atabakhshian V., Loghman A., Shajari A., Amir S., 2012, Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Physica B, 407, 2549-2555
- 13. Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E., 2008, Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity, Physica E, 40, 2791-2799
- 14. Hosseini-Hashemi S., Fakher M., Nazemnezhad R., 2013, Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: A comparison between Euler-Bernoulli and Timoshenko, Journal of Solid Mechanics, 5, 290-304
- 15. Hosseini-Hashemi S., Nazemnezhad R., Bedroud M., 2014, Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity, Applied Mathematical Modelling, 38, 3538-3553
- 16. Ke L.-L., Yang J., Kitipornchai S., 2010, An analytical study on the nonlinear vibration of functionally graded beams, Meccanica, 45, 743-752
- 17. Ke L., Xiang Y., Yang J., Kitipornchai S., 2009, Nonlinear free vibration of embedded doublewalled carbon nanotubes based on nonlocal Timoshenko beam theory, Computational Materials Science, 47, 409-417
- 18. Kiani K., 2010, Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique, Physica E, 43, 387-397
- 19. Lestari W., Hanagud S., 2001, Nonlinear vibration of buckled beams: some exact solutions, International Journal of Solids and Structures, 38, 4741-4757
- 20. Ma Q., Clarke D.R., 1995, Size dependent hardness of silver single crystals, Journal of Materials Research, 10, 853-863
- 21. Malekzadeh P., Shojaee M., 2013, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams, Composites, Part B – Engineering, 52, 84-92
- 22. Narendar S., Gopalakrishnan S., 2009, Nonlocal scale effects on wave propagation in multiwalled carbon nanotubes, Computational Materials Science, 47, 526-538
- 23. Nazemnezhad R., Hosseini-Hashemi S., 2014, Nonlocal nonlinear free vibration of functionally graded nanobeams, Composites Structures, 110, 192-199
- 24. Ogata S., Li J., Yip S., 2002, Ideal pure shear strength of aluminum and copper, Science, 298, 807-811
- 25. Rao S.S., 2007, Vibration of Continuous Systems, John Wiley & Sons
- 26. Reddy J., 2007, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45, 288-307
- 27. Reddy J., 2010, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48, 1507-1518
- 28. Setoodeh A., Khosrownejad M., Malekzadeh P., 2011, Exact nonlocal solution for postbuckling of single-walled carbon nanotubes, Physica E, 43, 1730-1737
- 29. Wang L., Hu H., 2005, Flexural wave propagation in single-walled carbon nanotubes, Physical Review B, 71, 195412
- 30. Wang Q., 2005, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98, 124301
- 31. Wang Q., Varadan V., 2007, Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes, Smart Materials and Structures, 16, 178
- 32. Xie G., Han X., Liu G., Long S., 2006, Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube, Smart Materials and Structures, 15, 1143
- 33. Yang J., Ke L., Kitipornchai S., 2010, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E, 42, 1727-1735
- 34. Yang X., Lim C., 2009, Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method, Science China Technological Sciences, 52, 617-621
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08d6da4a-202e-4547-b09d-e770f1c6a7e1