Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was conducted to analyse the strength and water absorption of precast concrete wall panels made by adding plastic powder and silica-rich recycled materials as partial replacements for sand and cement. Precast concrete wall panels are made from a mixture of sand to cement ratio of 3:1 and added with sufficient water. Gradually, the sand fraction is replaced with plastic powder, while the cement fraction is replaced partially by rice husk ash and glass powder. The variables studied include the effect of plastic powder, silica-rich recycled materials, and water-to-binders ratio on compressive strength and durability, including water absorption, sulfate and acid attack resistance of precast wall panels. The research revealed that replacing 20% of sand and 10% of cement with plastic powder and silica-rich recycled materials with the water-to-binder weight ratio of 1.6 produces precast concrete wall panels with a water absorption, and compressive strength of 11,14-11,48%, and 4.85-5.06 MPa, respectively. These precast concrete wall panels are acceptable for lightweight concrete wall panel requirements according to ASTM C129-06.
Wydawca
Rocznik
Tom
Strony
181--193
Opis fizyczny
Bibliogr. 47 poz., fig., tab
Twórcy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116, Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116, Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116, Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116, Bali, Indonesia
- Student of Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116, Bali, Indonesia
Bibliografia
- 1. Verma R., Vinoda K. S., Papireddy M., Gowda A. N. S. Toxic pollutants from plastic waste. A review, Procedia Environ. Sci. 2016; 35: 701–708. https://doi.org/10.1016/j.proenv.2016.07.069.
- 2. Dalai S. P., Ampolu S., Hanumanthu U., Hariharan A. Impacts of effluents from plastic waste on environment and precautions, Chem. Sci. Rev. Lett. 2022; 11(43): 356–360. https://doi.org/10.37273/chesci.CS205306488.
- 3. Agyeman S., Obeng-Ahenkora N. K., Assiamah S., Twumasi G. Exploiting recycled plastic waste as alternative binder for paving blocks production, Case Stud. Constr. Mater. 2019; 11: e00246. https://doi.org/10.1016/j.cscm.2019.e00246.
- 4. Sastrawidana D. K., Sukarta I. N., Saraswati L. P. A. Plastic waste reinforced with inorganic pigment from red stone in manufacturing paving block for pedestrian application, J. Achiev. Mater. Manuf. Eng. 2022; 110(2): 49–58. https://doi.org/10.5604/01.3001.0015.7042.
- 5. Kofteci S. Effect of HDPE based wastes on the performance of modified asphalt mixtures, Procedia Eng. 2016; 161: 1268–1274. https://doi.org/10.1016/j.proeng.2016.08.567.
- 6. Dadzie D. K., Kaliluthin A. K., Kumar D. R. Exploration of waste plastic bottles use in construction, Civ. Eng. J. 2020; 6(11): 2262–2272. https://doi.org/10.28991/cej-2020-03091616.
- 7. Tokpomehoun G. M., Oyawa W. O., Ng’ang’a T. J., Okumu V. A. Structural performance of plastic block masonry unit, Heliyon 2022; 8(2): e11112. https://doi.org/10.1016/j.heliyon.2022.e11112.
- 8. Bezera A. K. L., Silva L. A., Araujo L. B. R., Cabral A. E. B. Production and characterization of artificial stone for coating limestone waste laminated in polymeric matric, Ambiente Construído 2022; 22(4): 23–33. https://doi.org/10.1590/s1678-86212022000400625.
- 9. da Silva C. B., de Paiva P. R. P. Artificial stone production using iron ore tailing, Ceramica 2020; 66(378): 164–171. https://doi.org/10.1590/0366-69132020663782854.
- 10. Barani K., Esmaili H. Production of artificial stone slabs using waste granite and marble stone sludge samples, Journal of Mining and Environment 2016; 7(1): 135–141. https://doi.org/10.22044/jme.2016.491.
- 11. Kanagara B., Kiran T., Gunasekaran J., Nammalva A., Arulra P., Gurupatham B. G. A., Roy K. Performance of sustainable insulated wall panels with geopolymer concrete, Materials 2022; 15(24): 8801. https://doi.org/10.3390/ma15248801.
- 12. Shahidan S., Leman A. S., Senin M. S., Hannan N. I. R. R. Suitability of coconut shell concrete for precast cool wall panel: A review, MATEC Web of Conferences 2017; 87: 01005. https://doi.org/10.1051/matecconf/20178701005.
- 13. Raki-in J. M., Villagracia K. L. M., Menchavez R. L. Fabrication of a wall-panel board using rice husk and red clay-based geopolymer, Mindanao Journal of Science and Technology 2021; 19(1): 250–268. https://doi.org/10.61310/mndjsteect.1057.21.
- 14. Hamoush S., Lebdeh T. A., Picornell M., Amer S. Development of sustainable engineered stone cladding for toughness, durability and energy conservation, Constr. Build. Mater. 2011; 25(10): 4006–4016. https://doi.org/10.1016/j.conbuildmat.2011.04.035.
- 15. Zajac M., Song J., Ullirch P., Skocek J., Haha M. B., Skibsted J. High early pozzolanic reactivity of alumina‑silica gel: A study of the hydration of composite cements with carbonated recycled concrete paste, Cem. Concr. Res. 2025; 175: 107345. https://doi.org/10.1016/j.cemconres.2023.107345.
- 16. Kameche Z. A., Djelil M., Dahmani B. Effects of incorporating silica glass powder as a supplementary cementitious material on selected properties of portland cement mortar, J. Build. Eng. 2023; 78(1): 107550. https://doi.org/10.1016/j.jobe.2023.107550.
- 17. Simatupang L., Siburian R., Ginting E., Pakpahan B. M. T., Simatupang K. A. P., Siagian D. G., Laoli E. R., Goei R., Tok A. I. Y. Sustainable porous silica material extracted from volcanic ash of Mount Sinabung Indonesia as corrosion inhibitor, Int. J. Technol. 2024; 15(4): 880–889. https://doi.org/10.14716/ijtech.v15i4.6740.
- 18. Morales‑Paredes C. A., Rodriques‑Linzan I., Saquete M. D., Luque R., Osman S. M., Boluda‑Botella N., Manuel R. D. J. Silica-derived materials from agro-industrial waste biomass: Characterization and comparative studies, Environ. Res. 2023; 231: 116002. https://doi.org/10.1016/j.envres.2023.116002.
- 19. ASTM C129‑06, Standard specification for non-loadbearing concrete masonry units, ASTM International, West Conshohocken, PA, USA, 2011. https://doi.org/10.1520/C0129‑06.
- 20. SNI 03‑0691‑1996, Indonesian National Standard Method for Paving Block Test.
- 21. JSTMC 7401, Method of Test for Chemical Resistance of Concrete in Aggressive Solution, Japanese Industrial Standard, Tokyo, Japan, 1999.
- 22. SNI 03‑3122‑1992, Fiber lightweight concrete panels, Indonesian National Standard, 1992.
- 23. Sastrawidana I. D. K., Sukarta I. N. Precast lightweight concrete wall panels from plastic waste and household ash as partially sand and cement replacement, Arch. Mater. Sci. Eng. 2024; 125(1): 22–31. https://doi.org/10.5604/01.3001.0054.4732.
- 24. Tota‑Maharaj K., Adeleke B. O., Nounu G. Effects of waste plastics as partial fine-aggregate replacement for reinforced low‑carbon concrete pavements, Int. J. Sustain. Eng. 2022; 15(1): 192–207. https://doi.org/10.1080/19397038.2022.2108156.
- 25. Islam M. J., Ahmed T., Shahjalal M., Jihad A. M., Based Z., Hasan M. M. Strength, durability, and impact behavior of recycled aggregate concrete with polypropylene aggregate, Constr. Build. Mater. 2023; 408: 133646. https://doi.org/10.1016/j.conbuildmat.2023.133646.
- 26. Omran S., Sisupalan S. Effect of replacing natural aggregate with plastic aggregate on the mechanical properties of concrete: Review, Civil and Environmental Engineering Reports 2024; 34(4): 0462–0482. https://doi.org/10.59440/ceer/193933.
- 27. Babatunde O. Y., Adebayo H. S., Shuaib Q. A. Effect of partial replacement of fine aggregate with plastic waste aggregate on workability and strength of concrete, Uniport Journal of Engineering and Scientific Research 2022; 6(2): 101–109.
- 28. Al‑Hadithi A. I., Al‑Ani M. F. Effects of adding waste plastics on some properties of high performance concrete, 11th International Conference on Developments in eSystems Engineering 2018; I: 273–279. https://doi.org/10.1109/DeSE.2018.00055.
- 29. Usman A. B., Jabba E. U. Investigating the water absorption and compressive strength of concrete block containing plastic waste, Nigeria Journal of Engineering Science and Technology Research 2022; 8(1): 74–880.
- 30. Awoyera P. O., Olalusi O. B., Ibia S., Krishna P. A. Water absorption, strength and microscale properties of interlocking concrete blocks made with plastic fibre and ceramics aggregates, Case Stud. Constr. Mater. 2021; 15: e00677. https://doi.org/10.1016/j.cscm.2021.e00677.
- 31. Alishah F. P., Razaei M. M. Effect of natural pozzolan on concrete’s mechanical properties and permeability in various grades of cement, J. Geotech. Geol. 2020; 16(2): 425–434. https://doi.org/10.30495/geotech.2020.680492.
- 32. Aakash, Vashistha K., Kumar S., Soni S. K. Enhancing concrete strength: The impact of silica admixture, E3S Web of Conferences 2024; 559: 04039. https://doi.org/10.1051/e3sconf/202455904039.
- 33. Valipour M., Pargar F., Shekarchi M., Khani S. Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study, Constr. Build. Mater. 2013; 41: 879–888. https://doi.org/10.1016/j.conbuildmat.2012.11.054.
- 34. Mohseni E., Tang W., Cui H. Chloride diffusion and acid resistance of concrete containing zeolite and tuff as partial replacements of cement and sand, Materials 2017; 10: 372. https://doi.org/10.3390/ma10040372.
- 35. Becerra-Duitama J. A., Rojas‑Avellaneda D. Pozzolans: A review, Eng. Appl. Sci. Res. 2022; 49(4): 495–504.
- 36. Lin Y., Alengaram U. J., Ibrahim Z. Effect of treated and untreated rice husk ash, palm oil fuel ash, and sugarcane bagasse ash on the mechanical, durability, and microstructure characteristics of blended concrete: A comprehensive review, J. Build. Eng. 2023; 78: 107500. https://doi.org/10.1016/j.jobe.2023.107500.
- 37. Amin M. N., Nazar S., Al‑Hashem N. M., Althoey F., Deifalla A. F., Arab A. M. A. An integral approach for testing and computational analysis of glass powder in cementitious composites, Case Stud. Constr. Mater. 2023; 18: e02063. https://doi.org/10.1016/j.cscm.2023.e02063.
- 38. Khitas N. E. H., Hebbache K., Douadi A., Boutlikht M., Belebchouche C., Messai A., Mahar N. E. H., Serrone G. D., Moretti L., Czarnecki S., Hadzima‑Nyarko M. Modeling and optimizing the properties of mortars based on natural pozzolan, silica sand, and recycled brick waste mixture design: A technical and environmental study, Constr. Build. Mater. 2025; 459: 139706. https://doi.org/10.1016/j.conbuildmat.2024.139706.
- 39. Dehghan S. M., Najafgholipour M. A., Baneshi V., Rowshanzamir M. Experimental study on effect of water–cement ratio and sand grading on workability and mechanical properties of masonry mortars in Iran, Iran J. Sci. Technol. Trans. Civ. Eng. 2019; 43: 21–32. https://doi.org/10.1007/s40996-018-0110-7.
- 40. Ali N., Yusup N. F. M., Khalid F. S., Shahidan S., Abdullah S. H. The effect of water cement ratio on cement brick containing high density polyethylene (HDPE) as sand replacement, MATEC Web of Conferences 2017; 150: 03010. https://doi.org/10.1051/matecconf/201815003010.
- 41. Mora-Ortiz R. S., Angel‑Meraz E. D., Díaz S. A., Magaña‑Hernández F., Munguía‑Balvanera E., Castro M. A. P., Alavez‑Ramírez J., Quiroga L./A. Effect of pre-wetting recycled mortar aggregate on the mechanical properties of masonry mortar, Materials 2021; 14: 1547. https://doi.org/10.3390/ma14061547.
- 42. Han M., Li J. Enhancement of compressive strength and durability of sulfate-attacked concrete, Buildings 2024; 14: 2187. https://doi.org/10.3390/buildings14072187.
- 43. Rashad A. M. An exploratory study on sodium sulfate activated slag modified with Portland cement, Materials and Structures 2015; 48(12): 4085–4095.
- 44. Zhao Y., Qiu J., Zhang S., Guo Z., Ma Z., Sun X., Xing J. Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders, Construction and Building Materials 2020; 250: 118603.
- 45. Arafa M., Tayeh B. A., Alqedra M., Shihada S., Hanoona H. Investigating the effect of sulfate attack on compressive strength of recycled aggregate concrete, Int. J. Sustain. Constr. Eng. Technol. 2017; 8(2): 66–77.
- 46. Hosseini S. A., Khankahdani F. A., Moosavinezhad S. A. H. Effect of acidic environments containing hydrochloric acid on rubberized concrete, International Journal of Engineering Transactions C: Aspects 2023; 36(12): 2198–2206.
- 47. Miyamoto S., Minagawa H., Hisada M. Deterioration rate of hardened cement caused by high concentrated mixed acid attack, Constr. Build. Mater. 2014; 67: 47–54. https://doi.org/10.1016/j.conbuildmat.2013.11.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08cf9a09-8bf8-4a8d-b0f5-804f30b7b767
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.