PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principles of positron porosimetry

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Polish Seminar on Positron Annihilation (42 nd ; 29.06-01.07.2016 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper deals with positron porosimetry (PP), which is based on positron annihilation lifetime spectroscopy (PALS). The numerical analysis of positron lifetime spectra for PP is more demanding than in most of other applications of PALS. The resulting intensity distributions of ortho-positronium (o-Ps) lifetimes are interpreted in terms of the extended Tao-Eldrup (ETE) model, which provides the dependence between the o-Ps lifetime and pore size. Additionally, the relation between the intensity of an o-Ps component and the pore volume allows obtaining pore size distribution (PSD). The value of the empirical parameter Δ, which is dependent on material, can be estimated from the temperature dependence of an o-Ps lifetime. The most unique feature of PP among other techniques that allow determination of PSDs is its ability to perform measurements in almost any conditions. This makes this method suitable for various in situ studies. In this review article, both the capabilities and the limitations of PP are discussed. The methods to overcome some of the limitations are presented.
Czasopismo
Rocznik
Strony
795--800
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
  • Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6145, Fax: +48 81 537 6191
Bibliografia
  • 1. Hatton, B. D., Landskron, K., Hunks, W. J., Bennett, M. R., Shukaris, D., Perovic, D. D., & Ozin, G. A. (2006). Materials chemistry for low-k materials. Mater. Today, 9(3), 22–31. DOI: 10.1016/S1369-7021(06)71387-6.
  • 2. Taguchi, A., & Schüth, F. (2005) . Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater., 77(1), 1–45. DOI: 10.1016/j.micromeso.2004.06.030.
  • 3. Slowing, I. I., Vivero-Escoto, J. L., Wu, C. -W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev., 60(11), 1278–1288. DOI: 10.1016/j.addr.2008.03.012.
  • 4. Chang, F., Zhou, J., Chen, P., Chen, Y., Jia, H., Saad, S. M. I., Gao, Y., Cao, X., & Zheng, T. (2013). Microporous and mesoporous materials for gas storage and separation: a review. Asia-Pac. J. Chem. Eng., 8(4), 618–626. DOI: 10.1002/apj.1717.
  • 5. Maretto, M., Blanchi, F., Vignola , R., Canepari, S., Baric, M., Iazzoni, R., Tagliabue, M., & Papini, M. P. (2014). Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities. J. Clean. Prod., 77, 22–34. DOI: 10.1016/j.jclepro.2013.12.070.
  • 6. Gidley, D. W., Frieze, W. E., Dull, T. L., Sun, J., Yee, A. F., Nguyen, C. V., & Yoon, D. Y. (2000). Determination of pore-size distribution in low-dielectric thin films. Appl. Phys. Lett., 76(10), 1282–1284. DOI: 10.1063/1.126009.
  • 7. Goworek, J., Zaleski, R., Borówka , A., Kusak, R., & mesoporous silicate and aluminosilicate molecular sieves by nitrogen adsorption, AFM and PALS. In S. Kaskel, P. Llewellyn, F. Rodriguez-Reinoso, & N. A. Seaton (Eds.), Characterisation of porous solids VIII: Proceedings of the 8th International Symposium on the Characterisation of Porous Solids (pp. 303–310). The Royal Society of Chemistry.
  • 8. Kullmann, J., Enke, D., Thraenert, S., Krause-Rehberg, R., & Inayat, A. (2010). Characterization of nanoporous monoliths using nitrogen adsorption and positronium annihilation lifetime spectroscopy. Colloids Surf. A, 357(1/3), 17–20. DOI: 10.1016/j.colsurfa.2009.09.030.
  • 9. Zaleski, R., Stefaniak, W., Maciej ewska, M., & Goworek, J. (2009). Porosity of polymer materials by various techniques. J. Porous Mat., 16(6), 691–698.DOI: 10.1007/s10934-008-9250-7.
  • 10. Zaleski, R., Kierys, A., Grochowicz, M., Dziadosz, M., & Goworek, J. (2011). Synthesis and characterization of nanostructural polymer-silica composite: Positron annihilation lifetime spectroscopy study. J. Colloid Interf. Sci., 358(1), 268–276. DOI: 10.1016/j.jcis.2011.03.008.
  • 11. Kilburn, D., Sokol, P. E., Sakai, V. G., & Alam, M. A. (2008). Confinement induces both higher free volume and lower molecular mobility in glycerol. Appl. Phys. Lett., 92(3), 033109. DOI: 10.1063/1.2835903.
  • 12. Iskrová, M., Majerník, V., Illeko vá, E., Šauša, O., Berek, D., & Krištiak, J. (2009). Free volume seen by positronium in bulk and confined molecular liquid. Mater. Sci. Forum, 607, 235–237. DOI: 10.4028/www. scientific.net/MSF.607.235.
  • 13. Zaleski, R., & Goworek, J. (2009) n- Nonadecane embedded in mesopores. Mater. Sci. Forum, 607, 180–182. DOI: 10.4028/www.scientific.net/MSF.607.180.
  • 14. Kullmann, J., Enke, D., Thraenert, S ., Krause-Rehberg, R., & Beiner, M. (2012). Characterization of pore filling of mesoporous host systems by means of positronium annihilation lifetime spectroscopy (PALS). Opt. Appl., 42(2), 281–286. DOI: 10.5277/oa120205.
  • 15. Zaleski, R., Stefaniak, W., Maciejew ska, M., & Goworek, J. (2010). Porosity evolution of VP-DVB/MCM-41 nanocomposite. J. Colloid Interf. Sci., 343(1), 134–140. DOI: 10.1016/j.jcis.2009.11.019.
  • 16. Zaleski, R., Dolecki, W., Kierys, A. , & Goworek, J. (2012). n-Heptane adsorption and desorption on porous silica observed by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 154, 142–147. DOI: 10.1016/j.micromeso.2011.08.032.
  • 17. Zaleski, R., & Wawryszczuk, J. (2008 ). Positron porosimetry studies of template removal from as-synthesized MCM-41 silica. Acta Phys. Pol. A, 113(5), 1543–1550.
  • 18.Zaleski, R., Goworek, J., & Borówka, A. (2007). Positronium annihilation study of as-synthesized MCM-41 silica under pressure. In P. L. Llewellyn, F. Rodriquez-Reinoso, J. Rouqerol, & N. Seaton (Eds.), Characterization of porous solids VII. (Studies in Surface Science and Catalysis, Vol. 160, pp. 471–478). Elsevier.
  • 19.Zaleski, R., Maciejewska, M., & Puzio, M. (2015). Mechanical stability of porous copolymers by positron annihilation lifetime spectroscopy. J. Phys. Chem. C, 119(21), 11636–11645. DOI: 10.1021/acs.jpcc.5b01722.
  • 20. Zaleski, R., Kierys, A., Dziadosz, M., Goworek, J., & Halasz, I. (2012). Positron annihilation and N2 -adsorption for nanopore determination in silicapolymer composites. RSC Adv., 2(9), 3729–3734. DOI: 10.1039/C2RA20147J.
  • 21. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 335(1/2), 310–317.DOI: 10.1016/0168-9002(93)90286-Q.
  • 22. Zaleski, R. (2006). Measurement and analysis of the positron annihilation lifetime spectra for mesoporous silica. Acta Phys. Pol. A, 110(5), 729–738.
  • 23. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.
  • 24. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56(11), 5499–5510. DOI: 10.1063/1.1677067.
  • 25. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63(1/2), 51–58. DOI: 10.1016/0301-0104(81)80307-2.
  • 26. Nakanishi, H., Wang, S. J., & Jean, Y. C. (1988). Microscopic surface tension studies by positron annihilation. In S. C. Sharma (Ed.), Proceedings of the International Symposium on Positron Annihilation Studies of Fluids (pp. 292–298). Singapore: World Scientific.
  • 27. Ciesielski, K., Dawidowicz, A. L., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45.DOI: 10.1016/S0009-2614(98)00416-3.
  • 28. Dull, T. L., Frieze, W. E., Gidley, D. W., Sun, J. N., & Yee, A. F. (2001). Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J. Phys. Chem. B, 105(20), 4657–4662.DOI: 10.1021/jp004182v.
  • 29. Zaleski, R., EELViS. http://sourceforge.net/projects/eelvis/ Accessed: February 20, 2015.
  • 30. Thränert, S., Enke, D., Dlubek, G., & Krause-Rehberg, R. (2009). Positron lifetime spectroscopy on controlled pore glass porosimetry and pore size distribution. Mater. Sci. Forum, 607, 169–172. DOI: 10.4028/0-87849-348-4.169.
  • 31. Zaleski, R., Wawryszczuk, J., & Goworek, T. (2007). Pick-off models in the studies of mesoporous silica MCM-41. Comparison of various methods of the PAL spectra analysis. Radiat. Phys. Chem., 76(2), 243–247. DOI: 10.1016/j.radphyschem.2006.03.044.
  • 32. Goworek, T., Ciesielski, K., Jasinska, B., & Wawryszczuk, J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett., 272(1/2), 91–95. DOI: 10.1016/S0009-2614(97)00504-6.
  • 33. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68(3/4), 531–534. DOI: 10.1016/S0969-806X(03)00224-X.
  • 34. Śniegocka, M., Jasińska, B., Wawryszczuk, J., Zaleski, R., Deryło-Marczewska, A., & Skrzypek, I. (2005). Testing the extended Tao-Eldrup model. Silica gels produced with polymer template. Acta Phys. Pol. A, 107, 868–873.
  • 35. Dlubek, G., Sen Gupta, A., Pionteck, J., Hassler, R., Krause-Rehberg, R., Kaspar, H., & Lochhaas, K. H. (2005). Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study. Polymer, 46(16), 607–6089. DOI: 10.1016/j.polymer.2005.04.090.
  • 36. Zaleski, R., Goworek, J., & Maciejewska, M. (2009). Positronium lifetime in porous VP-DVB copolymer. Phys. Status Solidi C, 6(11), 2445–2447. DOI: 10.1002/pssc.200982075.
  • 37. Goworek, T., Jasinska, B., Wawryszczuk, J., Zaleski, R., & Suzuki, T. (2002). On possible deviations of experimental PALS data from positronium pick-off model estimates. Chem. Phys., 280(3), 295–307. DOI: 10.1016/S0301-0104(02)00491-3.
  • 38. Gorgol, M., Tydda, M., Kierys, A., & Zaleski, R. (2012). Composition of pore surface investigated by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 163, 276–281. DOI:10.1016/j.micromeso.2012.07.029.
  • 39. Gorgol, M., Zaleski, R., & Kierys, A. (2013). Gas filling of SBA-15 silica micropores probed by positron annihilation lifetime spectroscopy (PALS). Nukleonika,58(1), 227–231.
  • 40. Zaleski, R., & Sokół, M. (2011). Influence of atmospheric gases present in the pores of MCM-41 on lifetime of ortho-positronium. Mater. Sci. Forum, 666, 123–128. DOI: 10.4028/www.scientific.net/MSF.666.123.
  • 41. Zaleski, R., Błażewicz, A., & Kierys, A. (2013). Ortho-positronium migration in mesopores of MCM-41, MSF and SBA-3. Nukleonika, 58(1), 233–238.
  • 42. Thraener t, S., Hassan, E. M., Enke, D., Fuerst, D., Krause-Rehberg, R. (2007). Verifying the RTE model: ortho-positronium lifetime measurement on controlled pore glasses. Phys. Status Solidi C, 4(10), 3819–3822. DOI: 10.1002/pssc.200675738.
  • 43. Jasińska , B., Zaleski, R., Śniegocka, M., Reisfeld, R., & Zigansky, E. (2007). Testing ETE model, temperature dependences of PALS data. Phys. Status Solidi C, 4(10), 3985–3988. DOI: 10.1002/pssc.200675809.
  • 44. Śniegocka, M., Jasińska, B., Goworek, T., & Zaleski, R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett., 430(4/6), 351–354. DOI: 10.1016/j.cplett.2006.09.001.
  • 45. Fischer, C . G., Weber, M. H., Wang, C. L., McNeil, S. P., & Lynn, K. G. (2005). Positronium in low temperature mesoporous films. Phys. Rev. B, 71(18), 180102. DOI: 10.1103/PhysRevB.71.180102.
  • 46. Zaleski, R. (2013). Ortho-positronium localization in pores of Vycor glass at low temperature. J. Phys. Conf. Ser., 443(1), 012062. DOI: 10.1088/1742-6596/443/1/012062
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08c1f1da-306a-4f57-8674-3f5981af56c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.