PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear Optimal Tracking For Missile Gimbaled Seeker Using Finite-Horizon State Dependent Riccati Equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The majority of homing guided missiles use gimbaled seekers. The equations describing seeker gimbal system are highly nonlinear. Accurate nonlinear control of the motion of the gimbaled seeker through the attached DC motors is required. In this paper, an online technique for finite-horizon nonlinear tracking problems is presented. The idea of the proposed technique is the change of variables that converts the nonlinear differential Riccati equation to a linear Lyapunov differential equation. The proposed technique is effective for wide range of operating points. Simulation results for a realistic gimbaled system with different engagement scenarios are given to illustrate the effectiveness of the proposed technique.
Twórcy
autor
  • Department of Electrical Engineering, Idaho State University, Pocatello, ID, 83209 USA
autor
  • Department of Electrical Engineering, Idaho State University, Pocatello, ID, 83209 USA
autor
  • R&D Department in the Military Technical College (MTC), Cairo, Egypt
Bibliografia
  • [1] C. A. Woolsey, “Review of marine control systems: Guidance, navigation, and control of ships, rigs and underwater vehicles,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 3, pp. 574–575, 2005.
  • [2] G. M. Siouris, Missile Guidance and Control Systems. Springer, 2004.
  • [3] T. Cimen, “Recent advances in nonlinear optimal feedback control design, ”Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, pp. 460–465, May 2006.
  • [4] J. R. Cloutier, “State-dependent Riccati equation techniques: An overview,” Proc. American Control Conference, vol. 2, pp. 932–936, 1997.
  • [5] T. Cimen, “Development and validation of a mathematical model for control of constrained nonlinear oil tanker motion,” Mathematical and Computer Modeling of Dynamical Systems, vol. 15, no. 1, p. 1749, 2009.
  • [6] A. Ratnoo and D. Ghose, “State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 1, pp. 320–326, 2009.
  • [7] S. Vaddi, P. K. Menon, and E. J. Ohlmeyer, “Numerical state-dependent Riccati equation approach for missile integrated guidance control,” Journal of guidance, control, and dynamics, vol. 32, no. 2, pp. 699–703, 2009.
  • [8] T. Cimen, “A generic approach to missile autopilot design using state-dependent nonlinear control,” in 18th IFAC World Congress, 2011, pp. 9587–9600.
  • [9] A. Heydari and S. N. Balakrishnan, “Path planning using a novel finite-horizon suboptimal controller,” Journal of Guidance, Control, and Dynamics, pp. 1–5, 2013.
  • [10] T. Nguyen and Z. Gajic, “Solving the matrix differential Riccati equation: a Lyapunov equation approach,” IEEE Trans. Automatic Control, vol. 55, no. 1, pp. 191–194, 2010.
  • [11] J. Nazarzadeh, M. Razzaghi, and K. Nikravesh, “Solution of the matrix Riccati equation for the linear quadratic control problems,” Mathematical and Computer Modelling, vol. 27, no. 7, pp. 51–55, 1998.
  • [12] A. Khamis and D. Naidu, “Nonlinear optimal tracking using finite-horizon state dependent Riccati equation ( SDRE),” Proceedings of the 4th International Conference on Circuits, Systems, Control, Signals (WSEAS), pp. 37–42, August 2013, valencia, Spain.
  • [13] D. S. Naidu, Optimal Control Systems. CRC Press, 2003.
  • [14] Z. Gajic and M. Qureshi, “The Lyapunov matrix equation in system stability and control,” New York: Dover Publications, 2008.
  • [15] A. Barraud, “A new numerical solution of xdot=a1*x+x*a2+d, x(0)=c,” IEEE Transaction on Automatic Control, vol. 22, no. 6, pp. 976–977, Dec. 1977.
  • [16] A. Khamis, “Design and realization of hardware in loop simulation for a homing guided missile,” Ph.D. dissertation, Military Technical Collage, Cairo, 2007.
  • [17] B. Etkin and L. D. Reid, Dynamics of Flight: Stability and Control. Wiley New York, 1982.
  • [18] A. Calise, S. Lee, and M. Sharma, “Direct adaptive reconfigurable control of a tailless fighter aircraft,” AIAA Guidance, Navigation, and Control Conference, pp. 88–97, 1998.
  • [19] Y. Ulybyshev, “Terminal guidance law based on proportional navigation,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 4, pp. 821–824, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-08bd6779-d2cb-4f93-a694-f19172bc8d6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.